Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4=0
Ikki tarafini 2 ga bo‘ling.
\left(x-2\right)\left(x+2\right)=0
Hisoblang: x^{2}-4. x^{2}-4 ni x^{2}-2^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
Tenglamani yechish uchun x-2=0 va x+2=0 ni yeching.
2x^{2}=8
8 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}=\frac{8}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}=4
4 ni olish uchun 8 ni 2 ga bo‘ling.
x=2 x=-2
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
2x^{2}-8=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-8\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va -8 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2\left(-8\right)}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8\left(-8\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{64}}{2\times 2}
-8 ni -8 marotabaga ko'paytirish.
x=\frac{0±8}{2\times 2}
64 ning kvadrat ildizini chiqarish.
x=\frac{0±8}{4}
2 ni 2 marotabaga ko'paytirish.
x=2
x=\frac{0±8}{4} tenglamasini yeching, bunda ± musbat. 8 ni 4 ga bo'lish.
x=-2
x=\frac{0±8}{4} tenglamasini yeching, bunda ± manfiy. -8 ni 4 ga bo'lish.
x=2 x=-2
Tenglama yechildi.