x uchun yechish
x=25\sqrt{15}-75\approx 21,824583655
x=-25\sqrt{15}-75\approx -171,824583655
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}+300x-7500=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-300±\sqrt{300^{2}-4\times 2\left(-7500\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 300 ni b va -7500 ni c bilan almashtiring.
x=\frac{-300±\sqrt{90000-4\times 2\left(-7500\right)}}{2\times 2}
300 kvadratini chiqarish.
x=\frac{-300±\sqrt{90000-8\left(-7500\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-300±\sqrt{90000+60000}}{2\times 2}
-8 ni -7500 marotabaga ko'paytirish.
x=\frac{-300±\sqrt{150000}}{2\times 2}
90000 ni 60000 ga qo'shish.
x=\frac{-300±100\sqrt{15}}{2\times 2}
150000 ning kvadrat ildizini chiqarish.
x=\frac{-300±100\sqrt{15}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{100\sqrt{15}-300}{4}
x=\frac{-300±100\sqrt{15}}{4} tenglamasini yeching, bunda ± musbat. -300 ni 100\sqrt{15} ga qo'shish.
x=25\sqrt{15}-75
-300+100\sqrt{15} ni 4 ga bo'lish.
x=\frac{-100\sqrt{15}-300}{4}
x=\frac{-300±100\sqrt{15}}{4} tenglamasini yeching, bunda ± manfiy. -300 dan 100\sqrt{15} ni ayirish.
x=-25\sqrt{15}-75
-300-100\sqrt{15} ni 4 ga bo'lish.
x=25\sqrt{15}-75 x=-25\sqrt{15}-75
Tenglama yechildi.
2x^{2}+300x-7500=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}+300x-7500-\left(-7500\right)=-\left(-7500\right)
7500 ni tenglamaning ikkala tarafiga qo'shish.
2x^{2}+300x=-\left(-7500\right)
O‘zidan -7500 ayirilsa 0 qoladi.
2x^{2}+300x=7500
0 dan -7500 ni ayirish.
\frac{2x^{2}+300x}{2}=\frac{7500}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{300}{2}x=\frac{7500}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+150x=\frac{7500}{2}
300 ni 2 ga bo'lish.
x^{2}+150x=3750
7500 ni 2 ga bo'lish.
x^{2}+150x+75^{2}=3750+75^{2}
150 ni bo‘lish, x shartining koeffitsienti, 2 ga 75 olish uchun. Keyin, 75 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+150x+5625=3750+5625
75 kvadratini chiqarish.
x^{2}+150x+5625=9375
3750 ni 5625 ga qo'shish.
\left(x+75\right)^{2}=9375
x^{2}+150x+5625 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+75\right)^{2}}=\sqrt{9375}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+75=25\sqrt{15} x+75=-25\sqrt{15}
Qisqartirish.
x=25\sqrt{15}-75 x=-25\sqrt{15}-75
Tenglamaning ikkala tarafidan 75 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}