x uchun yechish
x=\frac{\sqrt{274}}{2}+1\approx 9,276472679
x=-\frac{\sqrt{274}}{2}+1\approx -7,276472679
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-4x-135=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-135\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -4 ni b va -135 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-135\right)}}{2\times 2}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-135\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16+1080}}{2\times 2}
-8 ni -135 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{1096}}{2\times 2}
16 ni 1080 ga qo'shish.
x=\frac{-\left(-4\right)±2\sqrt{274}}{2\times 2}
1096 ning kvadrat ildizini chiqarish.
x=\frac{4±2\sqrt{274}}{2\times 2}
-4 ning teskarisi 4 ga teng.
x=\frac{4±2\sqrt{274}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{274}+4}{4}
x=\frac{4±2\sqrt{274}}{4} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{274} ga qo'shish.
x=\frac{\sqrt{274}}{2}+1
4+2\sqrt{274} ni 4 ga bo'lish.
x=\frac{4-2\sqrt{274}}{4}
x=\frac{4±2\sqrt{274}}{4} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{274} ni ayirish.
x=-\frac{\sqrt{274}}{2}+1
4-2\sqrt{274} ni 4 ga bo'lish.
x=\frac{\sqrt{274}}{2}+1 x=-\frac{\sqrt{274}}{2}+1
Tenglama yechildi.
2x^{2}-4x-135=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-4x-135-\left(-135\right)=-\left(-135\right)
135 ni tenglamaning ikkala tarafiga qo'shish.
2x^{2}-4x=-\left(-135\right)
O‘zidan -135 ayirilsa 0 qoladi.
2x^{2}-4x=135
0 dan -135 ni ayirish.
\frac{2x^{2}-4x}{2}=\frac{135}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{135}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-2x=\frac{135}{2}
-4 ni 2 ga bo'lish.
x^{2}-2x+1=\frac{135}{2}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=\frac{137}{2}
\frac{135}{2} ni 1 ga qo'shish.
\left(x-1\right)^{2}=\frac{137}{2}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{137}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{\sqrt{274}}{2} x-1=-\frac{\sqrt{274}}{2}
Qisqartirish.
x=\frac{\sqrt{274}}{2}+1 x=-\frac{\sqrt{274}}{2}+1
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}