Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-4x+7=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\times 7}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -4 ni b va 7 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\times 7}}{2\times 2}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16-8\times 7}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16-56}}{2\times 2}
-8 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{-40}}{2\times 2}
16 ni -56 ga qo'shish.
x=\frac{-\left(-4\right)±2\sqrt{10}i}{2\times 2}
-40 ning kvadrat ildizini chiqarish.
x=\frac{4±2\sqrt{10}i}{2\times 2}
-4 ning teskarisi 4 ga teng.
x=\frac{4±2\sqrt{10}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4+2\sqrt{10}i}{4}
x=\frac{4±2\sqrt{10}i}{4} tenglamasini yeching, bunda ± musbat. 4 ni 2i\sqrt{10} ga qo'shish.
x=\frac{\sqrt{10}i}{2}+1
4+2i\sqrt{10} ni 4 ga bo'lish.
x=\frac{-2\sqrt{10}i+4}{4}
x=\frac{4±2\sqrt{10}i}{4} tenglamasini yeching, bunda ± manfiy. 4 dan 2i\sqrt{10} ni ayirish.
x=-\frac{\sqrt{10}i}{2}+1
4-2i\sqrt{10} ni 4 ga bo'lish.
x=\frac{\sqrt{10}i}{2}+1 x=-\frac{\sqrt{10}i}{2}+1
Tenglama yechildi.
2x^{2}-4x+7=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-4x+7-7=-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
2x^{2}-4x=-7
O‘zidan 7 ayirilsa 0 qoladi.
\frac{2x^{2}-4x}{2}=-\frac{7}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{4}{2}\right)x=-\frac{7}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-2x=-\frac{7}{2}
-4 ni 2 ga bo'lish.
x^{2}-2x+1=-\frac{7}{2}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=-\frac{5}{2}
-\frac{7}{2} ni 1 ga qo'shish.
\left(x-1\right)^{2}=-\frac{5}{2}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{5}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{\sqrt{10}i}{2} x-1=-\frac{\sqrt{10}i}{2}
Qisqartirish.
x=\frac{\sqrt{10}i}{2}+1 x=-\frac{\sqrt{10}i}{2}+1
1 ni tenglamaning ikkala tarafiga qo'shish.