Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-18x+9=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2\times 9}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 2\times 9}}{2\times 2}
-18 kvadratini chiqarish.
x=\frac{-\left(-18\right)±\sqrt{324-8\times 9}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{324-72}}{2\times 2}
-8 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{252}}{2\times 2}
324 ni -72 ga qo'shish.
x=\frac{-\left(-18\right)±6\sqrt{7}}{2\times 2}
252 ning kvadrat ildizini chiqarish.
x=\frac{18±6\sqrt{7}}{2\times 2}
-18 ning teskarisi 18 ga teng.
x=\frac{18±6\sqrt{7}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{6\sqrt{7}+18}{4}
x=\frac{18±6\sqrt{7}}{4} tenglamasini yeching, bunda ± musbat. 18 ni 6\sqrt{7} ga qo'shish.
x=\frac{3\sqrt{7}+9}{2}
18+6\sqrt{7} ni 4 ga bo'lish.
x=\frac{18-6\sqrt{7}}{4}
x=\frac{18±6\sqrt{7}}{4} tenglamasini yeching, bunda ± manfiy. 18 dan 6\sqrt{7} ni ayirish.
x=\frac{9-3\sqrt{7}}{2}
18-6\sqrt{7} ni 4 ga bo'lish.
2x^{2}-18x+9=2\left(x-\frac{3\sqrt{7}+9}{2}\right)\left(x-\frac{9-3\sqrt{7}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{9+3\sqrt{7}}{2} ga va x_{2} uchun \frac{9-3\sqrt{7}}{2} ga bo‘ling.