Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-12x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -12 ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\left(-1\right)}}{2\times 2}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144-8\left(-1\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{144+8}}{2\times 2}
-8 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{152}}{2\times 2}
144 ni 8 ga qo'shish.
x=\frac{-\left(-12\right)±2\sqrt{38}}{2\times 2}
152 ning kvadrat ildizini chiqarish.
x=\frac{12±2\sqrt{38}}{2\times 2}
-12 ning teskarisi 12 ga teng.
x=\frac{12±2\sqrt{38}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{38}+12}{4}
x=\frac{12±2\sqrt{38}}{4} tenglamasini yeching, bunda ± musbat. 12 ni 2\sqrt{38} ga qo'shish.
x=\frac{\sqrt{38}}{2}+3
12+2\sqrt{38} ni 4 ga bo'lish.
x=\frac{12-2\sqrt{38}}{4}
x=\frac{12±2\sqrt{38}}{4} tenglamasini yeching, bunda ± manfiy. 12 dan 2\sqrt{38} ni ayirish.
x=-\frac{\sqrt{38}}{2}+3
12-2\sqrt{38} ni 4 ga bo'lish.
x=\frac{\sqrt{38}}{2}+3 x=-\frac{\sqrt{38}}{2}+3
Tenglama yechildi.
2x^{2}-12x-1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-12x-1-\left(-1\right)=-\left(-1\right)
1 ni tenglamaning ikkala tarafiga qo'shish.
2x^{2}-12x=-\left(-1\right)
O‘zidan -1 ayirilsa 0 qoladi.
2x^{2}-12x=1
0 dan -1 ni ayirish.
\frac{2x^{2}-12x}{2}=\frac{1}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{12}{2}\right)x=\frac{1}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-6x=\frac{1}{2}
-12 ni 2 ga bo'lish.
x^{2}-6x+\left(-3\right)^{2}=\frac{1}{2}+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=\frac{1}{2}+9
-3 kvadratini chiqarish.
x^{2}-6x+9=\frac{19}{2}
\frac{1}{2} ni 9 ga qo'shish.
\left(x-3\right)^{2}=\frac{19}{2}
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{\frac{19}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=\frac{\sqrt{38}}{2} x-3=-\frac{\sqrt{38}}{2}
Qisqartirish.
x=\frac{\sqrt{38}}{2}+3 x=-\frac{\sqrt{38}}{2}+3
3 ni tenglamaning ikkala tarafiga qo'shish.