Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-x-3=0
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
a+b=-1 ab=4\left(-3\right)=-12
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 4x^{2}+ax+bx-3 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-12 2,-6 3,-4
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -12-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-12=-11 2-6=-4 3-4=-1
Har bir juftlik yigʻindisini hisoblang.
a=-4 b=3
Yechim – -1 yigʻindisini beruvchi juftlik.
\left(4x^{2}-4x\right)+\left(3x-3\right)
4x^{2}-x-3 ni \left(4x^{2}-4x\right)+\left(3x-3\right) sifatida qaytadan yozish.
4x\left(x-1\right)+3\left(x-1\right)
Birinchi guruhda 4x ni va ikkinchi guruhda 3 ni faktordan chiqaring.
\left(x-1\right)\left(4x+3\right)
Distributiv funktsiyasidan foydalangan holda x-1 umumiy terminini chiqaring.
x=1 x=-\frac{3}{4}
Tenglamani yechish uchun x-1=0 va 4x+3=0 ni yeching.
4x^{2}-x-3=0
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 4\left(-3\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -1 ni b va -3 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-16\left(-3\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 4}
-16 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 4}
1 ni 48 ga qo'shish.
x=\frac{-\left(-1\right)±7}{2\times 4}
49 ning kvadrat ildizini chiqarish.
x=\frac{1±7}{2\times 4}
-1 ning teskarisi 1 ga teng.
x=\frac{1±7}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{8}{8}
x=\frac{1±7}{8} tenglamasini yeching, bunda ± musbat. 1 ni 7 ga qo'shish.
x=1
8 ni 8 ga bo'lish.
x=-\frac{6}{8}
x=\frac{1±7}{8} tenglamasini yeching, bunda ± manfiy. 1 dan 7 ni ayirish.
x=-\frac{3}{4}
\frac{-6}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=1 x=-\frac{3}{4}
Tenglama yechildi.
4x^{2}-x-3=0
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
4x^{2}-x=3
3 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{4x^{2}-x}{4}=\frac{3}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}-\frac{1}{4}x=\frac{3}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{3}{4}+\left(-\frac{1}{8}\right)^{2}
-\frac{1}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{8} olish uchun. Keyin, -\frac{1}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{3}{4}+\frac{1}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{8} kvadratini chiqarish.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{49}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{4} ni \frac{1}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{8}\right)^{2}=\frac{49}{64}
x^{2}-\frac{1}{4}x+\frac{1}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{8}=\frac{7}{8} x-\frac{1}{8}=-\frac{7}{8}
Qisqartirish.
x=1 x=-\frac{3}{4}
\frac{1}{8} ni tenglamaning ikkala tarafiga qo'shish.