x uchun yechish
x = \frac{\sqrt{79} + 9}{2} \approx 8,944097209
x=\frac{9-\sqrt{79}}{2}\approx 0,055902791
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-18x=-1
Ikkala tarafdan 18x ni ayirish.
2x^{2}-18x+1=0
1 ni ikki tarafga qo’shing.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -18 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 2}}{2\times 2}
-18 kvadratini chiqarish.
x=\frac{-\left(-18\right)±\sqrt{324-8}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{316}}{2\times 2}
324 ni -8 ga qo'shish.
x=\frac{-\left(-18\right)±2\sqrt{79}}{2\times 2}
316 ning kvadrat ildizini chiqarish.
x=\frac{18±2\sqrt{79}}{2\times 2}
-18 ning teskarisi 18 ga teng.
x=\frac{18±2\sqrt{79}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{79}+18}{4}
x=\frac{18±2\sqrt{79}}{4} tenglamasini yeching, bunda ± musbat. 18 ni 2\sqrt{79} ga qo'shish.
x=\frac{\sqrt{79}+9}{2}
18+2\sqrt{79} ni 4 ga bo'lish.
x=\frac{18-2\sqrt{79}}{4}
x=\frac{18±2\sqrt{79}}{4} tenglamasini yeching, bunda ± manfiy. 18 dan 2\sqrt{79} ni ayirish.
x=\frac{9-\sqrt{79}}{2}
18-2\sqrt{79} ni 4 ga bo'lish.
x=\frac{\sqrt{79}+9}{2} x=\frac{9-\sqrt{79}}{2}
Tenglama yechildi.
2x^{2}-18x=-1
Ikkala tarafdan 18x ni ayirish.
\frac{2x^{2}-18x}{2}=-\frac{1}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{18}{2}\right)x=-\frac{1}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-9x=-\frac{1}{2}
-18 ni 2 ga bo'lish.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-\frac{1}{2}+\left(-\frac{9}{2}\right)^{2}
-9 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{2} olish uchun. Keyin, -\frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-9x+\frac{81}{4}=-\frac{1}{2}+\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2} kvadratini chiqarish.
x^{2}-9x+\frac{81}{4}=\frac{79}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{2} ni \frac{81}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{9}{2}\right)^{2}=\frac{79}{4}
x^{2}-9x+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{79}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{2}=\frac{\sqrt{79}}{2} x-\frac{9}{2}=-\frac{\sqrt{79}}{2}
Qisqartirish.
x=\frac{\sqrt{79}+9}{2} x=\frac{9-\sqrt{79}}{2}
\frac{9}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}