x uchun yechish
x = \frac{\sqrt{385} - 1}{4} \approx 4,655354218
x=\frac{-\sqrt{385}-1}{4}\approx -5,155354218
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}+x-48=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-48\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 1 ni b va -48 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\times 2\left(-48\right)}}{2\times 2}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1-8\left(-48\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1+384}}{2\times 2}
-8 ni -48 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{385}}{2\times 2}
1 ni 384 ga qo'shish.
x=\frac{-1±\sqrt{385}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{385}-1}{4}
x=\frac{-1±\sqrt{385}}{4} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{385} ga qo'shish.
x=\frac{-\sqrt{385}-1}{4}
x=\frac{-1±\sqrt{385}}{4} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{385} ni ayirish.
x=\frac{\sqrt{385}-1}{4} x=\frac{-\sqrt{385}-1}{4}
Tenglama yechildi.
2x^{2}+x-48=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}+x-48-\left(-48\right)=-\left(-48\right)
48 ni tenglamaning ikkala tarafiga qo'shish.
2x^{2}+x=-\left(-48\right)
O‘zidan -48 ayirilsa 0 qoladi.
2x^{2}+x=48
0 dan -48 ni ayirish.
\frac{2x^{2}+x}{2}=\frac{48}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{1}{2}x=\frac{48}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{2}x=24
48 ni 2 ga bo'lish.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=24+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{4} olish uchun. Keyin, \frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{2}x+\frac{1}{16}=24+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{4} kvadratini chiqarish.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{385}{16}
24 ni \frac{1}{16} ga qo'shish.
\left(x+\frac{1}{4}\right)^{2}=\frac{385}{16}
x^{2}+\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{385}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{4}=\frac{\sqrt{385}}{4} x+\frac{1}{4}=-\frac{\sqrt{385}}{4}
Qisqartirish.
x=\frac{\sqrt{385}-1}{4} x=\frac{-\sqrt{385}-1}{4}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}