Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+5x+3=20
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
2x^{2}+5x+3-20=20-20
Tenglamaning ikkala tarafidan 20 ni ayirish.
2x^{2}+5x+3-20=0
O‘zidan 20 ayirilsa 0 qoladi.
2x^{2}+5x-17=0
3 dan 20 ni ayirish.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-17\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 5 ni b va -17 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 2\left(-17\right)}}{2\times 2}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-8\left(-17\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25+136}}{2\times 2}
-8 ni -17 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{161}}{2\times 2}
25 ni 136 ga qo'shish.
x=\frac{-5±\sqrt{161}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{161}-5}{4}
x=\frac{-5±\sqrt{161}}{4} tenglamasini yeching, bunda ± musbat. -5 ni \sqrt{161} ga qo'shish.
x=\frac{-\sqrt{161}-5}{4}
x=\frac{-5±\sqrt{161}}{4} tenglamasini yeching, bunda ± manfiy. -5 dan \sqrt{161} ni ayirish.
x=\frac{\sqrt{161}-5}{4} x=\frac{-\sqrt{161}-5}{4}
Tenglama yechildi.
2x^{2}+5x+3=20
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}+5x+3-3=20-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
2x^{2}+5x=20-3
O‘zidan 3 ayirilsa 0 qoladi.
2x^{2}+5x=17
20 dan 3 ni ayirish.
\frac{2x^{2}+5x}{2}=\frac{17}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{5}{2}x=\frac{17}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\frac{17}{2}+\left(\frac{5}{4}\right)^{2}
\frac{5}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{4} olish uchun. Keyin, \frac{5}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{17}{2}+\frac{25}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{4} kvadratini chiqarish.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{161}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{17}{2} ni \frac{25}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{5}{4}\right)^{2}=\frac{161}{16}
x^{2}+\frac{5}{2}x+\frac{25}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{161}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{4}=\frac{\sqrt{161}}{4} x+\frac{5}{4}=-\frac{\sqrt{161}}{4}
Qisqartirish.
x=\frac{\sqrt{161}-5}{4} x=\frac{-\sqrt{161}-5}{4}
Tenglamaning ikkala tarafidan \frac{5}{4} ni ayirish.