Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+4x-1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-1\right)}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{16-4\times 2\left(-1\right)}}{2\times 2}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16-8\left(-1\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16+8}}{2\times 2}
-8 ni -1 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{24}}{2\times 2}
16 ni 8 ga qo'shish.
x=\frac{-4±2\sqrt{6}}{2\times 2}
24 ning kvadrat ildizini chiqarish.
x=\frac{-4±2\sqrt{6}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{6}-4}{4}
x=\frac{-4±2\sqrt{6}}{4} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{6} ga qo'shish.
x=\frac{\sqrt{6}}{2}-1
-4+2\sqrt{6} ni 4 ga bo'lish.
x=\frac{-2\sqrt{6}-4}{4}
x=\frac{-4±2\sqrt{6}}{4} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{6} ni ayirish.
x=-\frac{\sqrt{6}}{2}-1
-4-2\sqrt{6} ni 4 ga bo'lish.
2x^{2}+4x-1=2\left(x-\left(\frac{\sqrt{6}}{2}-1\right)\right)\left(x-\left(-\frac{\sqrt{6}}{2}-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -1+\frac{\sqrt{6}}{2} ga va x_{2} uchun -1-\frac{\sqrt{6}}{2} ga bo‘ling.