Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(2x+4+2\right)=0
x omili.
x=0 x=-3
Tenglamani yechish uchun x=0 va 2x+6=0 ni yeching.
2x^{2}+6x=0
6x ni olish uchun 4x va 2x ni birlashtirish.
x=\frac{-6±\sqrt{6^{2}}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 6 ni b va 0 ni c bilan almashtiring.
x=\frac{-6±6}{2\times 2}
6^{2} ning kvadrat ildizini chiqarish.
x=\frac{-6±6}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{0}{4}
x=\frac{-6±6}{4} tenglamasini yeching, bunda ± musbat. -6 ni 6 ga qo'shish.
x=0
0 ni 4 ga bo'lish.
x=-\frac{12}{4}
x=\frac{-6±6}{4} tenglamasini yeching, bunda ± manfiy. -6 dan 6 ni ayirish.
x=-3
-12 ni 4 ga bo'lish.
x=0 x=-3
Tenglama yechildi.
2x^{2}+6x=0
6x ni olish uchun 4x va 2x ni birlashtirish.
\frac{2x^{2}+6x}{2}=\frac{0}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{6}{2}x=\frac{0}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+3x=\frac{0}{2}
6 ni 2 ga bo'lish.
x^{2}+3x=0
0 ni 2 ga bo'lish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
\left(x+\frac{3}{2}\right)^{2}=\frac{9}{4}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{3}{2} x+\frac{3}{2}=-\frac{3}{2}
Qisqartirish.
x=0 x=-3
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.