Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=3 ab=2\left(-14\right)=-28
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 2x^{2}+ax+bx-14 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,28 -2,14 -4,7
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -28-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+28=27 -2+14=12 -4+7=3
Har bir juftlik yigʻindisini hisoblang.
a=-4 b=7
Yechim – 3 yigʻindisini beruvchi juftlik.
\left(2x^{2}-4x\right)+\left(7x-14\right)
2x^{2}+3x-14 ni \left(2x^{2}-4x\right)+\left(7x-14\right) sifatida qaytadan yozish.
2x\left(x-2\right)+7\left(x-2\right)
Birinchi guruhda 2x ni va ikkinchi guruhda 7 ni faktordan chiqaring.
\left(x-2\right)\left(2x+7\right)
Distributiv funktsiyasidan foydalangan holda x-2 umumiy terminini chiqaring.
x=2 x=-\frac{7}{2}
Tenglamani yechish uchun x-2=0 va 2x+7=0 ni yeching.
2x^{2}+3x-14=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-14\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 3 ni b va -14 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\times 2\left(-14\right)}}{2\times 2}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-8\left(-14\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+112}}{2\times 2}
-8 ni -14 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{121}}{2\times 2}
9 ni 112 ga qo'shish.
x=\frac{-3±11}{2\times 2}
121 ning kvadrat ildizini chiqarish.
x=\frac{-3±11}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{8}{4}
x=\frac{-3±11}{4} tenglamasini yeching, bunda ± musbat. -3 ni 11 ga qo'shish.
x=2
8 ni 4 ga bo'lish.
x=-\frac{14}{4}
x=\frac{-3±11}{4} tenglamasini yeching, bunda ± manfiy. -3 dan 11 ni ayirish.
x=-\frac{7}{2}
\frac{-14}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=2 x=-\frac{7}{2}
Tenglama yechildi.
2x^{2}+3x-14=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}+3x-14-\left(-14\right)=-\left(-14\right)
14 ni tenglamaning ikkala tarafiga qo'shish.
2x^{2}+3x=-\left(-14\right)
O‘zidan -14 ayirilsa 0 qoladi.
2x^{2}+3x=14
0 dan -14 ni ayirish.
\frac{2x^{2}+3x}{2}=\frac{14}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{3}{2}x=\frac{14}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{2}x=7
14 ni 2 ga bo'lish.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=7+\left(\frac{3}{4}\right)^{2}
\frac{3}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{4} olish uchun. Keyin, \frac{3}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{2}x+\frac{9}{16}=7+\frac{9}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{4} kvadratini chiqarish.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{121}{16}
7 ni \frac{9}{16} ga qo'shish.
\left(x+\frac{3}{4}\right)^{2}=\frac{121}{16}
x^{2}+\frac{3}{2}x+\frac{9}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{4}=\frac{11}{4} x+\frac{3}{4}=-\frac{11}{4}
Qisqartirish.
x=2 x=-\frac{7}{2}
Tenglamaning ikkala tarafidan \frac{3}{4} ni ayirish.