Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}=6-32
Ikkala tarafdan 32 ni ayirish.
2x^{2}=-26
-26 olish uchun 6 dan 32 ni ayirish.
x^{2}=\frac{-26}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}=-13
-13 ni olish uchun -26 ni 2 ga bo‘ling.
x=\sqrt{13}i x=-\sqrt{13}i
Tenglama yechildi.
2x^{2}+32-6=0
Ikkala tarafdan 6 ni ayirish.
2x^{2}+26=0
26 olish uchun 32 dan 6 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 26}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va 26 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2\times 26}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8\times 26}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-208}}{2\times 2}
-8 ni 26 marotabaga ko'paytirish.
x=\frac{0±4\sqrt{13}i}{2\times 2}
-208 ning kvadrat ildizini chiqarish.
x=\frac{0±4\sqrt{13}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\sqrt{13}i
x=\frac{0±4\sqrt{13}i}{4} tenglamasini yeching, bunda ± musbat.
x=-\sqrt{13}i
x=\frac{0±4\sqrt{13}i}{4} tenglamasini yeching, bunda ± manfiy.
x=\sqrt{13}i x=-\sqrt{13}i
Tenglama yechildi.