Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+2x+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}-4\times 2\times 2}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 2 ni b va 2 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\times 2\times 2}}{2\times 2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-8\times 2}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4-16}}{2\times 2}
-8 ni 2 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{-12}}{2\times 2}
4 ni -16 ga qo'shish.
x=\frac{-2±2\sqrt{3}i}{2\times 2}
-12 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{3}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{-2+2\sqrt{3}i}{4}
x=\frac{-2±2\sqrt{3}i}{4} tenglamasini yeching, bunda ± musbat. -2 ni 2i\sqrt{3} ga qo'shish.
x=\frac{-1+\sqrt{3}i}{2}
-2+2i\sqrt{3} ni 4 ga bo'lish.
x=\frac{-2\sqrt{3}i-2}{4}
x=\frac{-2±2\sqrt{3}i}{4} tenglamasini yeching, bunda ± manfiy. -2 dan 2i\sqrt{3} ni ayirish.
x=\frac{-\sqrt{3}i-1}{2}
-2-2i\sqrt{3} ni 4 ga bo'lish.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Tenglama yechildi.
2x^{2}+2x+2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}+2x+2-2=-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
2x^{2}+2x=-2
O‘zidan 2 ayirilsa 0 qoladi.
\frac{2x^{2}+2x}{2}=-\frac{2}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{2}{2}x=-\frac{2}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+x=-\frac{2}{2}
2 ni 2 ga bo'lish.
x^{2}+x=-1
-2 ni 2 ga bo'lish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
-1 ni \frac{1}{4} ga qo'shish.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Qisqartirish.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.