Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+12x-9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{12^{2}-4\times 2\left(-9\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 12 ni b va -9 ni c bilan almashtiring.
x=\frac{-12±\sqrt{144-4\times 2\left(-9\right)}}{2\times 2}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-8\left(-9\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{144+72}}{2\times 2}
-8 ni -9 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{216}}{2\times 2}
144 ni 72 ga qo'shish.
x=\frac{-12±6\sqrt{6}}{2\times 2}
216 ning kvadrat ildizini chiqarish.
x=\frac{-12±6\sqrt{6}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{6\sqrt{6}-12}{4}
x=\frac{-12±6\sqrt{6}}{4} tenglamasini yeching, bunda ± musbat. -12 ni 6\sqrt{6} ga qo'shish.
x=\frac{3\sqrt{6}}{2}-3
-12+6\sqrt{6} ni 4 ga bo'lish.
x=\frac{-6\sqrt{6}-12}{4}
x=\frac{-12±6\sqrt{6}}{4} tenglamasini yeching, bunda ± manfiy. -12 dan 6\sqrt{6} ni ayirish.
x=-\frac{3\sqrt{6}}{2}-3
-12-6\sqrt{6} ni 4 ga bo'lish.
x=\frac{3\sqrt{6}}{2}-3 x=-\frac{3\sqrt{6}}{2}-3
Tenglama yechildi.
2x^{2}+12x-9=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}+12x-9-\left(-9\right)=-\left(-9\right)
9 ni tenglamaning ikkala tarafiga qo'shish.
2x^{2}+12x=-\left(-9\right)
O‘zidan -9 ayirilsa 0 qoladi.
2x^{2}+12x=9
0 dan -9 ni ayirish.
\frac{2x^{2}+12x}{2}=\frac{9}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{12}{2}x=\frac{9}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+6x=\frac{9}{2}
12 ni 2 ga bo'lish.
x^{2}+6x+3^{2}=\frac{9}{2}+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=\frac{9}{2}+9
3 kvadratini chiqarish.
x^{2}+6x+9=\frac{27}{2}
\frac{9}{2} ni 9 ga qo'shish.
\left(x+3\right)^{2}=\frac{27}{2}
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{\frac{27}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=\frac{3\sqrt{6}}{2} x+3=-\frac{3\sqrt{6}}{2}
Qisqartirish.
x=\frac{3\sqrt{6}}{2}-3 x=-\frac{3\sqrt{6}}{2}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.