x uchun yechish
x=2\sqrt{15}\approx 7,745966692
x=-2\sqrt{15}\approx -7,745966692
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}+x^{2}=180
2 daraja ko‘rsatkichini -x ga hisoblang va x^{2} ni qiymatni oling.
3x^{2}=180
3x^{2} ni olish uchun 2x^{2} va x^{2} ni birlashtirish.
x^{2}=\frac{180}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}=60
60 ni olish uchun 180 ni 3 ga bo‘ling.
x=2\sqrt{15} x=-2\sqrt{15}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
2x^{2}+x^{2}=180
2 daraja ko‘rsatkichini -x ga hisoblang va x^{2} ni qiymatni oling.
3x^{2}=180
3x^{2} ni olish uchun 2x^{2} va x^{2} ni birlashtirish.
3x^{2}-180=0
Ikkala tarafdan 180 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-180\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 0 ni b va -180 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 3\left(-180\right)}}{2\times 3}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-12\left(-180\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{0±\sqrt{2160}}{2\times 3}
-12 ni -180 marotabaga ko'paytirish.
x=\frac{0±12\sqrt{15}}{2\times 3}
2160 ning kvadrat ildizini chiqarish.
x=\frac{0±12\sqrt{15}}{6}
2 ni 3 marotabaga ko'paytirish.
x=2\sqrt{15}
x=\frac{0±12\sqrt{15}}{6} tenglamasini yeching, bunda ± musbat.
x=-2\sqrt{15}
x=\frac{0±12\sqrt{15}}{6} tenglamasini yeching, bunda ± manfiy.
x=2\sqrt{15} x=-2\sqrt{15}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}