Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+\frac{1}{2}-x=0
Ikkala tarafdan x ni ayirish.
2x^{2}-x+\frac{1}{2}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\times \frac{1}{2}}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -1 ni b va \frac{1}{2} ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-8\times \frac{1}{2}}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2\times 2}
-8 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{-3}}{2\times 2}
1 ni -4 ga qo'shish.
x=\frac{-\left(-1\right)±\sqrt{3}i}{2\times 2}
-3 ning kvadrat ildizini chiqarish.
x=\frac{1±\sqrt{3}i}{2\times 2}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{3}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{1+\sqrt{3}i}{4}
x=\frac{1±\sqrt{3}i}{4} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{3} ga qo'shish.
x=\frac{-\sqrt{3}i+1}{4}
x=\frac{1±\sqrt{3}i}{4} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{3} ni ayirish.
x=\frac{1+\sqrt{3}i}{4} x=\frac{-\sqrt{3}i+1}{4}
Tenglama yechildi.
2x^{2}+\frac{1}{2}-x=0
Ikkala tarafdan x ni ayirish.
2x^{2}-x=-\frac{1}{2}
Ikkala tarafdan \frac{1}{2} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{2x^{2}-x}{2}=-\frac{\frac{1}{2}}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}-\frac{1}{2}x=-\frac{\frac{1}{2}}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=-\frac{1}{4}
-\frac{1}{2} ni 2 ga bo'lish.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{1}{4}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{1}{4}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{3}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{4} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{4}\right)^{2}=-\frac{3}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{3}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{\sqrt{3}i}{4} x-\frac{1}{4}=-\frac{\sqrt{3}i}{4}
Qisqartirish.
x=\frac{1+\sqrt{3}i}{4} x=\frac{-\sqrt{3}i+1}{4}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.