Asosiy tarkibga oʻtish
w uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

w^{2}-9=0
Ikki tarafini 2 ga bo‘ling.
\left(w-3\right)\left(w+3\right)=0
Hisoblang: w^{2}-9. w^{2}-9 ni w^{2}-3^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
w=3 w=-3
Tenglamani yechish uchun w-3=0 va w+3=0 ni yeching.
2w^{2}=18
18 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
w^{2}=\frac{18}{2}
Ikki tarafini 2 ga bo‘ling.
w^{2}=9
9 ni olish uchun 18 ni 2 ga bo‘ling.
w=3 w=-3
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
2w^{2}-18=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
w=\frac{0±\sqrt{0^{2}-4\times 2\left(-18\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va -18 ni c bilan almashtiring.
w=\frac{0±\sqrt{-4\times 2\left(-18\right)}}{2\times 2}
0 kvadratini chiqarish.
w=\frac{0±\sqrt{-8\left(-18\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
w=\frac{0±\sqrt{144}}{2\times 2}
-8 ni -18 marotabaga ko'paytirish.
w=\frac{0±12}{2\times 2}
144 ning kvadrat ildizini chiqarish.
w=\frac{0±12}{4}
2 ni 2 marotabaga ko'paytirish.
w=3
w=\frac{0±12}{4} tenglamasini yeching, bunda ± musbat. 12 ni 4 ga bo'lish.
w=-3
w=\frac{0±12}{4} tenglamasini yeching, bunda ± manfiy. -12 ni 4 ga bo'lish.
w=3 w=-3
Tenglama yechildi.