Baholash
2
Baham ko'rish
Klipbordga nusxa olish
2\times 1^{2}+\left(\cos(30)\right)^{2}-\left(\sin(60)\right)^{2}
Trigonometrik qiymatlar jadvaldan \tan(45) qiymatini oling.
2\times 1+\left(\cos(30)\right)^{2}-\left(\sin(60)\right)^{2}
2 daraja ko‘rsatkichini 1 ga hisoblang va 1 ni qiymatni oling.
2+\left(\cos(30)\right)^{2}-\left(\sin(60)\right)^{2}
2 hosil qilish uchun 2 va 1 ni ko'paytirish.
2+\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\sin(60)\right)^{2}
Trigonometrik qiymatlar jadvaldan \cos(30) qiymatini oling.
2+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\sin(60)\right)^{2}
\frac{\sqrt{3}}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{2\times 2^{2}}{2^{2}}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\sin(60)\right)^{2}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2 ni \frac{2^{2}}{2^{2}} marotabaga ko'paytirish.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\sin(60)\right)^{2}
\frac{2\times 2^{2}}{2^{2}} va \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\frac{\sqrt{3}}{2}\right)^{2}
Trigonometrik qiymatlar jadvaldan \sin(60) qiymatini oling.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
\frac{\sqrt{3}}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{2^{2}}
\sqrt{3} kvadrati – 3.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{4}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{4}-\frac{3}{4}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2^{2} ni kengaytirish.
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}-3}{4}
\frac{2\times 2^{2}+\left(\sqrt{3}\right)^{2}}{4} va \frac{3}{4} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2^{3}+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{4}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 2 ni qo‘shib, 3 ni oling.
\frac{8+\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{4}
3 daraja ko‘rsatkichini 2 ga hisoblang va 8 ni qiymatni oling.
\frac{8+3}{2^{2}}-\frac{3}{4}
\sqrt{3} kvadrati – 3.
\frac{11}{2^{2}}-\frac{3}{4}
11 olish uchun 8 va 3'ni qo'shing.
\frac{11}{4}-\frac{3}{4}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
2
2 olish uchun \frac{11}{4} dan \frac{3}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}