Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2\times \frac{\sqrt{1}}{\sqrt{27}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
\sqrt{\frac{1}{27}} boʻlinmasining kvadrat ildizini \frac{\sqrt{1}}{\sqrt{27}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
2\times \frac{1}{\sqrt{27}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
1 ning kvadrat ildizini hisoblab, 1 natijaga ega bo‘ling.
2\times \frac{1}{3\sqrt{3}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Faktor: 27=3^{2}\times 3. \sqrt{3^{2}\times 3} koʻpaytmasining kvadrat ildizini \sqrt{3^{2}}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 3^{2} ning kvadrat ildizini chiqarish.
2\times \frac{\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
\frac{1}{3\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
2\times \frac{\sqrt{3}}{3\times 3}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
\sqrt{3} kvadrati – 3.
2\times \frac{\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
9 hosil qilish uchun 3 va 3 ni ko'paytirish.
\frac{2\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
2\times \frac{\sqrt{3}}{9} ni yagona kasrga aylantiring.
\frac{2\sqrt{3}}{9}-\frac{2}{3}\times 3\sqrt{2}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Faktor: 18=3^{2}\times 2. \sqrt{3^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{3^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 3^{2} ning kvadrat ildizini chiqarish.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
3 va 3 ni qisqartiring.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{\sqrt{4}}{\sqrt{3}}+4\sqrt{\frac{1}{2}}
\sqrt{\frac{4}{3}} boʻlinmasining kvadrat ildizini \frac{\sqrt{4}}{\sqrt{3}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2}{\sqrt{3}}+4\sqrt{\frac{1}{2}}
4 ning kvadrat ildizini hisoblab, 2 natijaga ega bo‘ling.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+4\sqrt{\frac{1}{2}}
\frac{2}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\sqrt{\frac{1}{2}}
\sqrt{3} kvadrati – 3.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{\sqrt{1}}{\sqrt{2}}
\sqrt{\frac{1}{2}} boʻlinmasining kvadrat ildizini \frac{\sqrt{1}}{\sqrt{2}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{1}{\sqrt{2}}
1 ning kvadrat ildizini hisoblab, 1 natijaga ega bo‘ling.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
\frac{1}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{\sqrt{2}}{2}
\sqrt{2} kvadrati – 2.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+2\sqrt{2}
4 va 2 ichida eng katta umumiy 2 faktorini bekor qiling.
\frac{2\sqrt{3}}{9}-\frac{2\sqrt{3}}{3}
0 ni olish uchun -2\sqrt{2} va 2\sqrt{2} ni birlashtirish.
\frac{2\sqrt{3}}{9}-\frac{3\times 2\sqrt{3}}{9}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 9 va 3 ning eng kichik umumiy karralisi 9. \frac{2\sqrt{3}}{3} ni \frac{3}{3} marotabaga ko'paytirish.
\frac{2\sqrt{3}-3\times 2\sqrt{3}}{9}
\frac{2\sqrt{3}}{9} va \frac{3\times 2\sqrt{3}}{9} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2\sqrt{3}-6\sqrt{3}}{9}
2\sqrt{3}-3\times 2\sqrt{3} ichidagi ko‘paytirishlarni bajaring.
\frac{-4\sqrt{3}}{9}
2\sqrt{3}-6\sqrt{3} hisob-kitobini qiling.