x uchun yechish
x=4
Grafik
Baham ko'rish
Klipbordga nusxa olish
2\sqrt{9x}=10-2\sqrt{x}+6
Tenglamaning ikkala tarafidan -6 ni ayirish.
\left(2\sqrt{9x}\right)^{2}=\left(10-2\sqrt{x}+6\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
2^{2}\left(\sqrt{9x}\right)^{2}=\left(10-2\sqrt{x}+6\right)^{2}
\left(2\sqrt{9x}\right)^{2} ni kengaytirish.
4\left(\sqrt{9x}\right)^{2}=\left(10-2\sqrt{x}+6\right)^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4\times 9x=\left(10-2\sqrt{x}+6\right)^{2}
2 daraja ko‘rsatkichini \sqrt{9x} ga hisoblang va 9x ni qiymatni oling.
36x=\left(10-2\sqrt{x}+6\right)^{2}
36 hosil qilish uchun 4 va 9 ni ko'paytirish.
36x=\left(10-2\sqrt{x}\right)^{2}+12\left(10-2\sqrt{x}\right)+36
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(10-2\sqrt{x}+6\right)^{2} kengaytirilishi uchun ishlating.
36x-\left(10-2\sqrt{x}\right)^{2}=12\left(10-2\sqrt{x}\right)+36
Ikkala tarafdan \left(10-2\sqrt{x}\right)^{2} ni ayirish.
36x-\left(10-2\sqrt{x}\right)^{2}-12\left(10-2\sqrt{x}\right)=36
Ikkala tarafdan 12\left(10-2\sqrt{x}\right) ni ayirish.
36x-\left(100-40\sqrt{x}+4\left(\sqrt{x}\right)^{2}\right)-12\left(10-2\sqrt{x}\right)=36
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(10-2\sqrt{x}\right)^{2} kengaytirilishi uchun ishlating.
36x-\left(100-40\sqrt{x}+4x\right)-12\left(10-2\sqrt{x}\right)=36
2 daraja ko‘rsatkichini \sqrt{x} ga hisoblang va x ni qiymatni oling.
36x-100+40\sqrt{x}-4x-12\left(10-2\sqrt{x}\right)=36
100-40\sqrt{x}+4x teskarisini topish uchun har birining teskarisini toping.
32x-100+40\sqrt{x}-12\left(10-2\sqrt{x}\right)=36
32x ni olish uchun 36x va -4x ni birlashtirish.
32x-100+40\sqrt{x}-120+24\sqrt{x}=36
-12 ga 10-2\sqrt{x} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
32x-220+40\sqrt{x}+24\sqrt{x}=36
-220 olish uchun -100 dan 120 ni ayirish.
32x-220+64\sqrt{x}=36
64\sqrt{x} ni olish uchun 40\sqrt{x} va 24\sqrt{x} ni birlashtirish.
32x+64\sqrt{x}=36+220
220 ni ikki tarafga qo’shing.
32x+64\sqrt{x}=256
256 olish uchun 36 va 220'ni qo'shing.
64\sqrt{x}=256-32x
Tenglamaning ikkala tarafidan 32x ni ayirish.
\left(64\sqrt{x}\right)^{2}=\left(-32x+256\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
64^{2}\left(\sqrt{x}\right)^{2}=\left(-32x+256\right)^{2}
\left(64\sqrt{x}\right)^{2} ni kengaytirish.
4096\left(\sqrt{x}\right)^{2}=\left(-32x+256\right)^{2}
2 daraja ko‘rsatkichini 64 ga hisoblang va 4096 ni qiymatni oling.
4096x=\left(-32x+256\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x} ga hisoblang va x ni qiymatni oling.
4096x=1024x^{2}-16384x+65536
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(-32x+256\right)^{2} kengaytirilishi uchun ishlating.
4096x-1024x^{2}=-16384x+65536
Ikkala tarafdan 1024x^{2} ni ayirish.
4096x-1024x^{2}+16384x=65536
16384x ni ikki tarafga qo’shing.
20480x-1024x^{2}=65536
20480x ni olish uchun 4096x va 16384x ni birlashtirish.
20480x-1024x^{2}-65536=0
Ikkala tarafdan 65536 ni ayirish.
-1024x^{2}+20480x-65536=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-20480±\sqrt{20480^{2}-4\left(-1024\right)\left(-65536\right)}}{2\left(-1024\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1024 ni a, 20480 ni b va -65536 ni c bilan almashtiring.
x=\frac{-20480±\sqrt{419430400-4\left(-1024\right)\left(-65536\right)}}{2\left(-1024\right)}
20480 kvadratini chiqarish.
x=\frac{-20480±\sqrt{419430400+4096\left(-65536\right)}}{2\left(-1024\right)}
-4 ni -1024 marotabaga ko'paytirish.
x=\frac{-20480±\sqrt{419430400-268435456}}{2\left(-1024\right)}
4096 ni -65536 marotabaga ko'paytirish.
x=\frac{-20480±\sqrt{150994944}}{2\left(-1024\right)}
419430400 ni -268435456 ga qo'shish.
x=\frac{-20480±12288}{2\left(-1024\right)}
150994944 ning kvadrat ildizini chiqarish.
x=\frac{-20480±12288}{-2048}
2 ni -1024 marotabaga ko'paytirish.
x=-\frac{8192}{-2048}
x=\frac{-20480±12288}{-2048} tenglamasini yeching, bunda ± musbat. -20480 ni 12288 ga qo'shish.
x=4
-8192 ni -2048 ga bo'lish.
x=-\frac{32768}{-2048}
x=\frac{-20480±12288}{-2048} tenglamasini yeching, bunda ± manfiy. -20480 dan 12288 ni ayirish.
x=16
-32768 ni -2048 ga bo'lish.
x=4 x=16
Tenglama yechildi.
2\sqrt{9\times 4}-6=10-2\sqrt{4}
2\sqrt{9x}-6=10-2\sqrt{x} tenglamasida x uchun 4 ni almashtiring.
6=6
Qisqartirish. x=4 tenglamani qoniqtiradi.
2\sqrt{9\times 16}-6=10-2\sqrt{16}
2\sqrt{9x}-6=10-2\sqrt{x} tenglamasida x uchun 16 ni almashtiring.
18=2
Qisqartirish. x=16 qiymati bu tenglamani qoniqtirmaydi.
2\sqrt{9\times 4}-6=10-2\sqrt{4}
2\sqrt{9x}-6=10-2\sqrt{x} tenglamasida x uchun 4 ni almashtiring.
6=6
Qisqartirish. x=4 tenglamani qoniqtiradi.
x=4
2\sqrt{9x}=10-2\sqrt{x}+6 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}