Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(2\sqrt{4\left(t-1\right)}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(2\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
4 ga t-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2^{2}\left(\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
\left(2\sqrt{4t-4}\right)^{2} ni kengaytirish.
4\left(\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4\left(4t-4\right)=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{4t-4} ga hisoblang va 4t-4 ni qiymatni oling.
16t-16=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
4 ga 4t-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16t-16=\left(\sqrt{8t-4}\right)^{2}
4 ga 2t-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16t-16=8t-4
2 daraja ko‘rsatkichini \sqrt{8t-4} ga hisoblang va 8t-4 ni qiymatni oling.
16t-16-8t=-4
Ikkala tarafdan 8t ni ayirish.
8t-16=-4
8t ni olish uchun 16t va -8t ni birlashtirish.
8t=-4+16
16 ni ikki tarafga qo’shing.
8t=12
12 olish uchun -4 va 16'ni qo'shing.
t=\frac{12}{8}
Ikki tarafini 8 ga bo‘ling.
t=\frac{3}{2}
\frac{12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
2\sqrt{4\left(\frac{3}{2}-1\right)}=\sqrt{4\left(2\times \frac{3}{2}-1\right)}
2\sqrt{4\left(t-1\right)}=\sqrt{4\left(2t-1\right)} tenglamasida t uchun \frac{3}{2} ni almashtiring.
2\times 2^{\frac{1}{2}}=2\times 2^{\frac{1}{2}}
Qisqartirish. t=\frac{3}{2} tenglamani qoniqtiradi.
t=\frac{3}{2}
2\sqrt{4\left(t-1\right)}=\sqrt{4\left(2t-1\right)} tenglamasi noyob yechimga ega.