x uchun yechish
x=\frac{\sqrt{2}-3}{7}\approx -0,22654092
Grafik
Baham ko'rish
Klipbordga nusxa olish
2\left(2x+1\right)-\sqrt{2}\left(x+1\right)=0
x qiymati -1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x+1 ga ko'paytirish.
4x+2-\sqrt{2}\left(x+1\right)=0
2 ga 2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x+2-\sqrt{2}x-\sqrt{2}=0
-\sqrt{2} ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x-\sqrt{2}x-\sqrt{2}=-2
Ikkala tarafdan 2 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
4x-\sqrt{2}x=-2+\sqrt{2}
\sqrt{2} ni ikki tarafga qo’shing.
\left(4-\sqrt{2}\right)x=-2+\sqrt{2}
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(4-\sqrt{2}\right)x=\sqrt{2}-2
Tenglama standart shaklda.
\frac{\left(4-\sqrt{2}\right)x}{4-\sqrt{2}}=\frac{\sqrt{2}-2}{4-\sqrt{2}}
Ikki tarafini 4-\sqrt{2} ga bo‘ling.
x=\frac{\sqrt{2}-2}{4-\sqrt{2}}
4-\sqrt{2} ga bo'lish 4-\sqrt{2} ga ko'paytirishni bekor qiladi.
x=\frac{\sqrt{2}-3}{7}
-2+\sqrt{2} ni 4-\sqrt{2} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}