Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2\left(3x+4\right)\times 2\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
x qiymati -1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x+1\right) ga ko'paytirish.
4\left(3x+4\right)\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
\left(12x+16\right)\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
4 ga 3x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12x^{2}+28x+16-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
12x+16 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
12x^{2}+28x+16-4\left(5x+2\right)\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
-4 hosil qilish uchun -2 va 2 ni ko'paytirish.
12x^{2}+28x+16+\left(-20x-8\right)\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
-4 ga 5x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12x^{2}+28x+16-20x^{2}-28x-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
-20x-8 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-8x^{2}+28x+16-28x-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
-8x^{2} ni olish uchun 12x^{2} va -20x^{2} ni birlashtirish.
-8x^{2}+16-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
0 ni olish uchun 28x va -28x ni birlashtirish.
-8x^{2}+8=3+4\left(4x+10\right)\times 2\left(x+1\right)
8 olish uchun 16 dan 8 ni ayirish.
-8x^{2}+8=3+8\left(4x+10\right)\left(x+1\right)
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
-8x^{2}+8=3+\left(32x+80\right)\left(x+1\right)
8 ga 4x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-8x^{2}+8=3+32x^{2}+112x+80
32x+80 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-8x^{2}+8=83+32x^{2}+112x
83 olish uchun 3 va 80'ni qo'shing.
-8x^{2}+8-83=32x^{2}+112x
Ikkala tarafdan 83 ni ayirish.
-8x^{2}-75=32x^{2}+112x
-75 olish uchun 8 dan 83 ni ayirish.
-8x^{2}-75-32x^{2}=112x
Ikkala tarafdan 32x^{2} ni ayirish.
-40x^{2}-75=112x
-40x^{2} ni olish uchun -8x^{2} va -32x^{2} ni birlashtirish.
-40x^{2}-75-112x=0
Ikkala tarafdan 112x ni ayirish.
-40x^{2}-112x-75=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-112\right)±\sqrt{\left(-112\right)^{2}-4\left(-40\right)\left(-75\right)}}{2\left(-40\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -40 ni a, -112 ni b va -75 ni c bilan almashtiring.
x=\frac{-\left(-112\right)±\sqrt{12544-4\left(-40\right)\left(-75\right)}}{2\left(-40\right)}
-112 kvadratini chiqarish.
x=\frac{-\left(-112\right)±\sqrt{12544+160\left(-75\right)}}{2\left(-40\right)}
-4 ni -40 marotabaga ko'paytirish.
x=\frac{-\left(-112\right)±\sqrt{12544-12000}}{2\left(-40\right)}
160 ni -75 marotabaga ko'paytirish.
x=\frac{-\left(-112\right)±\sqrt{544}}{2\left(-40\right)}
12544 ni -12000 ga qo'shish.
x=\frac{-\left(-112\right)±4\sqrt{34}}{2\left(-40\right)}
544 ning kvadrat ildizini chiqarish.
x=\frac{112±4\sqrt{34}}{2\left(-40\right)}
-112 ning teskarisi 112 ga teng.
x=\frac{112±4\sqrt{34}}{-80}
2 ni -40 marotabaga ko'paytirish.
x=\frac{4\sqrt{34}+112}{-80}
x=\frac{112±4\sqrt{34}}{-80} tenglamasini yeching, bunda ± musbat. 112 ni 4\sqrt{34} ga qo'shish.
x=-\frac{\sqrt{34}}{20}-\frac{7}{5}
112+4\sqrt{34} ni -80 ga bo'lish.
x=\frac{112-4\sqrt{34}}{-80}
x=\frac{112±4\sqrt{34}}{-80} tenglamasini yeching, bunda ± manfiy. 112 dan 4\sqrt{34} ni ayirish.
x=\frac{\sqrt{34}}{20}-\frac{7}{5}
112-4\sqrt{34} ni -80 ga bo'lish.
x=-\frac{\sqrt{34}}{20}-\frac{7}{5} x=\frac{\sqrt{34}}{20}-\frac{7}{5}
Tenglama yechildi.
2\left(3x+4\right)\times 2\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
x qiymati -1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x+1\right) ga ko'paytirish.
4\left(3x+4\right)\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
\left(12x+16\right)\left(x+1\right)-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
4 ga 3x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12x^{2}+28x+16-2\left(5x+2\right)\times 2\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
12x+16 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
12x^{2}+28x+16-4\left(5x+2\right)\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
-4 hosil qilish uchun -2 va 2 ni ko'paytirish.
12x^{2}+28x+16+\left(-20x-8\right)\left(x+1\right)=3+4\left(4x+10\right)\times 2\left(x+1\right)
-4 ga 5x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
12x^{2}+28x+16-20x^{2}-28x-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
-20x-8 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-8x^{2}+28x+16-28x-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
-8x^{2} ni olish uchun 12x^{2} va -20x^{2} ni birlashtirish.
-8x^{2}+16-8=3+4\left(4x+10\right)\times 2\left(x+1\right)
0 ni olish uchun 28x va -28x ni birlashtirish.
-8x^{2}+8=3+4\left(4x+10\right)\times 2\left(x+1\right)
8 olish uchun 16 dan 8 ni ayirish.
-8x^{2}+8=3+8\left(4x+10\right)\left(x+1\right)
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
-8x^{2}+8=3+\left(32x+80\right)\left(x+1\right)
8 ga 4x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-8x^{2}+8=3+32x^{2}+112x+80
32x+80 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-8x^{2}+8=83+32x^{2}+112x
83 olish uchun 3 va 80'ni qo'shing.
-8x^{2}+8-32x^{2}=83+112x
Ikkala tarafdan 32x^{2} ni ayirish.
-40x^{2}+8=83+112x
-40x^{2} ni olish uchun -8x^{2} va -32x^{2} ni birlashtirish.
-40x^{2}+8-112x=83
Ikkala tarafdan 112x ni ayirish.
-40x^{2}-112x=83-8
Ikkala tarafdan 8 ni ayirish.
-40x^{2}-112x=75
75 olish uchun 83 dan 8 ni ayirish.
\frac{-40x^{2}-112x}{-40}=\frac{75}{-40}
Ikki tarafini -40 ga bo‘ling.
x^{2}+\left(-\frac{112}{-40}\right)x=\frac{75}{-40}
-40 ga bo'lish -40 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{14}{5}x=\frac{75}{-40}
\frac{-112}{-40} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{14}{5}x=-\frac{15}{8}
\frac{75}{-40} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{14}{5}x+\left(\frac{7}{5}\right)^{2}=-\frac{15}{8}+\left(\frac{7}{5}\right)^{2}
\frac{14}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{5} olish uchun. Keyin, \frac{7}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{14}{5}x+\frac{49}{25}=-\frac{15}{8}+\frac{49}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{5} kvadratini chiqarish.
x^{2}+\frac{14}{5}x+\frac{49}{25}=\frac{17}{200}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{15}{8} ni \frac{49}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{7}{5}\right)^{2}=\frac{17}{200}
x^{2}+\frac{14}{5}x+\frac{49}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{5}\right)^{2}}=\sqrt{\frac{17}{200}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{5}=\frac{\sqrt{34}}{20} x+\frac{7}{5}=-\frac{\sqrt{34}}{20}
Qisqartirish.
x=\frac{\sqrt{34}}{20}-\frac{7}{5} x=-\frac{\sqrt{34}}{20}-\frac{7}{5}
Tenglamaning ikkala tarafidan \frac{7}{5} ni ayirish.