Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2\sqrt{x+1}=3-\sqrt{x+2}
Tenglamaning ikkala tarafidan \sqrt{x+2} ni ayirish.
\left(2\sqrt{x+1}\right)^{2}=\left(3-\sqrt{x+2}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
2^{2}\left(\sqrt{x+1}\right)^{2}=\left(3-\sqrt{x+2}\right)^{2}
\left(2\sqrt{x+1}\right)^{2} ni kengaytirish.
4\left(\sqrt{x+1}\right)^{2}=\left(3-\sqrt{x+2}\right)^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4\left(x+1\right)=\left(3-\sqrt{x+2}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x+1} ga hisoblang va x+1 ni qiymatni oling.
4x+4=\left(3-\sqrt{x+2}\right)^{2}
4 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x+4=9-6\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3-\sqrt{x+2}\right)^{2} kengaytirilishi uchun ishlating.
4x+4=9-6\sqrt{x+2}+x+2
2 daraja ko‘rsatkichini \sqrt{x+2} ga hisoblang va x+2 ni qiymatni oling.
4x+4=11-6\sqrt{x+2}+x
11 olish uchun 9 va 2'ni qo'shing.
4x+4-\left(11+x\right)=-6\sqrt{x+2}
Tenglamaning ikkala tarafidan 11+x ni ayirish.
4x+4-11-x=-6\sqrt{x+2}
11+x teskarisini topish uchun har birining teskarisini toping.
4x-7-x=-6\sqrt{x+2}
-7 olish uchun 4 dan 11 ni ayirish.
3x-7=-6\sqrt{x+2}
3x ni olish uchun 4x va -x ni birlashtirish.
\left(3x-7\right)^{2}=\left(-6\sqrt{x+2}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
9x^{2}-42x+49=\left(-6\sqrt{x+2}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-7\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-42x+49=\left(-6\right)^{2}\left(\sqrt{x+2}\right)^{2}
\left(-6\sqrt{x+2}\right)^{2} ni kengaytirish.
9x^{2}-42x+49=36\left(\sqrt{x+2}\right)^{2}
2 daraja ko‘rsatkichini -6 ga hisoblang va 36 ni qiymatni oling.
9x^{2}-42x+49=36\left(x+2\right)
2 daraja ko‘rsatkichini \sqrt{x+2} ga hisoblang va x+2 ni qiymatni oling.
9x^{2}-42x+49=36x+72
36 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x^{2}-42x+49-36x=72
Ikkala tarafdan 36x ni ayirish.
9x^{2}-78x+49=72
-78x ni olish uchun -42x va -36x ni birlashtirish.
9x^{2}-78x+49-72=0
Ikkala tarafdan 72 ni ayirish.
9x^{2}-78x-23=0
-23 olish uchun 49 dan 72 ni ayirish.
x=\frac{-\left(-78\right)±\sqrt{\left(-78\right)^{2}-4\times 9\left(-23\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -78 ni b va -23 ni c bilan almashtiring.
x=\frac{-\left(-78\right)±\sqrt{6084-4\times 9\left(-23\right)}}{2\times 9}
-78 kvadratini chiqarish.
x=\frac{-\left(-78\right)±\sqrt{6084-36\left(-23\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-78\right)±\sqrt{6084+828}}{2\times 9}
-36 ni -23 marotabaga ko'paytirish.
x=\frac{-\left(-78\right)±\sqrt{6912}}{2\times 9}
6084 ni 828 ga qo'shish.
x=\frac{-\left(-78\right)±48\sqrt{3}}{2\times 9}
6912 ning kvadrat ildizini chiqarish.
x=\frac{78±48\sqrt{3}}{2\times 9}
-78 ning teskarisi 78 ga teng.
x=\frac{78±48\sqrt{3}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{48\sqrt{3}+78}{18}
x=\frac{78±48\sqrt{3}}{18} tenglamasini yeching, bunda ± musbat. 78 ni 48\sqrt{3} ga qo'shish.
x=\frac{8\sqrt{3}+13}{3}
78+48\sqrt{3} ni 18 ga bo'lish.
x=\frac{78-48\sqrt{3}}{18}
x=\frac{78±48\sqrt{3}}{18} tenglamasini yeching, bunda ± manfiy. 78 dan 48\sqrt{3} ni ayirish.
x=\frac{13-8\sqrt{3}}{3}
78-48\sqrt{3} ni 18 ga bo'lish.
x=\frac{8\sqrt{3}+13}{3} x=\frac{13-8\sqrt{3}}{3}
Tenglama yechildi.
2\sqrt{\frac{8\sqrt{3}+13}{3}+1}+\sqrt{\frac{8\sqrt{3}+13}{3}+2}=3
2\sqrt{x+1}+\sqrt{x+2}=3 tenglamasida x uchun \frac{8\sqrt{3}+13}{3} ni almashtiring.
5+\frac{8}{3}\times 3^{\frac{1}{2}}=3
Qisqartirish. x=\frac{8\sqrt{3}+13}{3} qiymati bu tenglamani qoniqtirmaydi.
2\sqrt{\frac{13-8\sqrt{3}}{3}+1}+\sqrt{\frac{13-8\sqrt{3}}{3}+2}=3
2\sqrt{x+1}+\sqrt{x+2}=3 tenglamasida x uchun \frac{13-8\sqrt{3}}{3} ni almashtiring.
3=3
Qisqartirish. x=\frac{13-8\sqrt{3}}{3} tenglamani qoniqtiradi.
x=\frac{13-8\sqrt{3}}{3}
2\sqrt{x+1}=-\sqrt{x+2}+3 tenglamasi noyob yechimga ega.