Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2^{x+1}=128
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
\log(2^{x+1})=\log(128)
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
\left(x+1\right)\log(2)=\log(128)
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
x+1=\frac{\log(128)}{\log(2)}
Ikki tarafini \log(2) ga bo‘ling.
x+1=\log_{2}\left(128\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=7-1
Tenglamaning ikkala tarafidan 1 ni ayirish.