Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2^{2x+7}=32768
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
\log(2^{2x+7})=\log(32768)
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
\left(2x+7\right)\log(2)=\log(32768)
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
2x+7=\frac{\log(32768)}{\log(2)}
Ikki tarafini \log(2) ga bo‘ling.
2x+7=\log_{2}\left(32768\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
2x=15-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
x=\frac{8}{2}
Ikki tarafini 2 ga bo‘ling.