Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4+9x^{2}=12
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
9x^{2}=12-4
Ikkala tarafdan 4 ni ayirish.
9x^{2}=8
8 olish uchun 12 dan 4 ni ayirish.
x^{2}=\frac{8}{9}
Ikki tarafini 9 ga bo‘ling.
x=\frac{2\sqrt{2}}{3} x=-\frac{2\sqrt{2}}{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
4+9x^{2}=12
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4+9x^{2}-12=0
Ikkala tarafdan 12 ni ayirish.
-8+9x^{2}=0
-8 olish uchun 4 dan 12 ni ayirish.
9x^{2}-8=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-8\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 0 ni b va -8 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 9\left(-8\right)}}{2\times 9}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-36\left(-8\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{0±\sqrt{288}}{2\times 9}
-36 ni -8 marotabaga ko'paytirish.
x=\frac{0±12\sqrt{2}}{2\times 9}
288 ning kvadrat ildizini chiqarish.
x=\frac{0±12\sqrt{2}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{2\sqrt{2}}{3}
x=\frac{0±12\sqrt{2}}{18} tenglamasini yeching, bunda ± musbat.
x=-\frac{2\sqrt{2}}{3}
x=\frac{0±12\sqrt{2}}{18} tenglamasini yeching, bunda ± manfiy.
x=\frac{2\sqrt{2}}{3} x=-\frac{2\sqrt{2}}{3}
Tenglama yechildi.