m uchun yechish
m=\frac{\sqrt{105}+1}{104}\approx 0,108143757
m=\frac{1-\sqrt{105}}{104}\approx -0,088912988
Baham ko'rish
Klipbordga nusxa olish
2\times 52m^{2}-2m-1=0
1 daraja ko‘rsatkichini 2 ga hisoblang va 2 ni qiymatni oling.
104m^{2}-2m-1=0
104 hosil qilish uchun 2 va 52 ni ko'paytirish.
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 104\left(-1\right)}}{2\times 104}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 104 ni a, -2 ni b va -1 ni c bilan almashtiring.
m=\frac{-\left(-2\right)±\sqrt{4-4\times 104\left(-1\right)}}{2\times 104}
-2 kvadratini chiqarish.
m=\frac{-\left(-2\right)±\sqrt{4-416\left(-1\right)}}{2\times 104}
-4 ni 104 marotabaga ko'paytirish.
m=\frac{-\left(-2\right)±\sqrt{4+416}}{2\times 104}
-416 ni -1 marotabaga ko'paytirish.
m=\frac{-\left(-2\right)±\sqrt{420}}{2\times 104}
4 ni 416 ga qo'shish.
m=\frac{-\left(-2\right)±2\sqrt{105}}{2\times 104}
420 ning kvadrat ildizini chiqarish.
m=\frac{2±2\sqrt{105}}{2\times 104}
-2 ning teskarisi 2 ga teng.
m=\frac{2±2\sqrt{105}}{208}
2 ni 104 marotabaga ko'paytirish.
m=\frac{2\sqrt{105}+2}{208}
m=\frac{2±2\sqrt{105}}{208} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{105} ga qo'shish.
m=\frac{\sqrt{105}+1}{104}
2+2\sqrt{105} ni 208 ga bo'lish.
m=\frac{2-2\sqrt{105}}{208}
m=\frac{2±2\sqrt{105}}{208} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{105} ni ayirish.
m=\frac{1-\sqrt{105}}{104}
2-2\sqrt{105} ni 208 ga bo'lish.
m=\frac{\sqrt{105}+1}{104} m=\frac{1-\sqrt{105}}{104}
Tenglama yechildi.
2\times 52m^{2}-2m-1=0
1 daraja ko‘rsatkichini 2 ga hisoblang va 2 ni qiymatni oling.
104m^{2}-2m-1=0
104 hosil qilish uchun 2 va 52 ni ko'paytirish.
104m^{2}-2m=1
1 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{104m^{2}-2m}{104}=\frac{1}{104}
Ikki tarafini 104 ga bo‘ling.
m^{2}+\left(-\frac{2}{104}\right)m=\frac{1}{104}
104 ga bo'lish 104 ga ko'paytirishni bekor qiladi.
m^{2}-\frac{1}{52}m=\frac{1}{104}
\frac{-2}{104} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
m^{2}-\frac{1}{52}m+\left(-\frac{1}{104}\right)^{2}=\frac{1}{104}+\left(-\frac{1}{104}\right)^{2}
-\frac{1}{52} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{104} olish uchun. Keyin, -\frac{1}{104} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}-\frac{1}{52}m+\frac{1}{10816}=\frac{1}{104}+\frac{1}{10816}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{104} kvadratini chiqarish.
m^{2}-\frac{1}{52}m+\frac{1}{10816}=\frac{105}{10816}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{104} ni \frac{1}{10816} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(m-\frac{1}{104}\right)^{2}=\frac{105}{10816}
m^{2}-\frac{1}{52}m+\frac{1}{10816} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m-\frac{1}{104}\right)^{2}}=\sqrt{\frac{105}{10816}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m-\frac{1}{104}=\frac{\sqrt{105}}{104} m-\frac{1}{104}=-\frac{\sqrt{105}}{104}
Qisqartirish.
m=\frac{\sqrt{105}+1}{104} m=\frac{1-\sqrt{105}}{104}
\frac{1}{104} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}