x uchun yechish
x = \frac{\sqrt{390}}{15} \approx 1,316561177
x = -\frac{\sqrt{390}}{15} \approx -1,316561177
Grafik
Viktorina
Polynomial
2 = 15 x ^ { 2 } - 24
Baham ko'rish
Klipbordga nusxa olish
15x^{2}-24=2
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
15x^{2}=2+24
24 ni ikki tarafga qo’shing.
15x^{2}=26
26 olish uchun 2 va 24'ni qo'shing.
x^{2}=\frac{26}{15}
Ikki tarafini 15 ga bo‘ling.
x=\frac{\sqrt{390}}{15} x=-\frac{\sqrt{390}}{15}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
15x^{2}-24=2
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
15x^{2}-24-2=0
Ikkala tarafdan 2 ni ayirish.
15x^{2}-26=0
-26 olish uchun -24 dan 2 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 15\left(-26\right)}}{2\times 15}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 15 ni a, 0 ni b va -26 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 15\left(-26\right)}}{2\times 15}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-60\left(-26\right)}}{2\times 15}
-4 ni 15 marotabaga ko'paytirish.
x=\frac{0±\sqrt{1560}}{2\times 15}
-60 ni -26 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{390}}{2\times 15}
1560 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{390}}{30}
2 ni 15 marotabaga ko'paytirish.
x=\frac{\sqrt{390}}{15}
x=\frac{0±2\sqrt{390}}{30} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{390}}{15}
x=\frac{0±2\sqrt{390}}{30} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{390}}{15} x=-\frac{\sqrt{390}}{15}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}