Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2+y-3y^{2}=y\left(y-3\right)
y ga 1-3y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2+y-3y^{2}=y^{2}-3y
y ga y-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2+y-3y^{2}-y^{2}=-3y
Ikkala tarafdan y^{2} ni ayirish.
2+y-4y^{2}=-3y
-4y^{2} ni olish uchun -3y^{2} va -y^{2} ni birlashtirish.
2+y-4y^{2}+3y=0
3y ni ikki tarafga qo’shing.
2+4y-4y^{2}=0
4y ni olish uchun y va 3y ni birlashtirish.
-4y^{2}+4y+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-4±\sqrt{4^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, 4 ni b va 2 ni c bilan almashtiring.
y=\frac{-4±\sqrt{16-4\left(-4\right)\times 2}}{2\left(-4\right)}
4 kvadratini chiqarish.
y=\frac{-4±\sqrt{16+16\times 2}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
y=\frac{-4±\sqrt{16+32}}{2\left(-4\right)}
16 ni 2 marotabaga ko'paytirish.
y=\frac{-4±\sqrt{48}}{2\left(-4\right)}
16 ni 32 ga qo'shish.
y=\frac{-4±4\sqrt{3}}{2\left(-4\right)}
48 ning kvadrat ildizini chiqarish.
y=\frac{-4±4\sqrt{3}}{-8}
2 ni -4 marotabaga ko'paytirish.
y=\frac{4\sqrt{3}-4}{-8}
y=\frac{-4±4\sqrt{3}}{-8} tenglamasini yeching, bunda ± musbat. -4 ni 4\sqrt{3} ga qo'shish.
y=\frac{1-\sqrt{3}}{2}
-4+4\sqrt{3} ni -8 ga bo'lish.
y=\frac{-4\sqrt{3}-4}{-8}
y=\frac{-4±4\sqrt{3}}{-8} tenglamasini yeching, bunda ± manfiy. -4 dan 4\sqrt{3} ni ayirish.
y=\frac{\sqrt{3}+1}{2}
-4-4\sqrt{3} ni -8 ga bo'lish.
y=\frac{1-\sqrt{3}}{2} y=\frac{\sqrt{3}+1}{2}
Tenglama yechildi.
2+y-3y^{2}=y\left(y-3\right)
y ga 1-3y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2+y-3y^{2}=y^{2}-3y
y ga y-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2+y-3y^{2}-y^{2}=-3y
Ikkala tarafdan y^{2} ni ayirish.
2+y-4y^{2}=-3y
-4y^{2} ni olish uchun -3y^{2} va -y^{2} ni birlashtirish.
2+y-4y^{2}+3y=0
3y ni ikki tarafga qo’shing.
2+4y-4y^{2}=0
4y ni olish uchun y va 3y ni birlashtirish.
4y-4y^{2}=-2
Ikkala tarafdan 2 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-4y^{2}+4y=-2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-4y^{2}+4y}{-4}=-\frac{2}{-4}
Ikki tarafini -4 ga bo‘ling.
y^{2}+\frac{4}{-4}y=-\frac{2}{-4}
-4 ga bo'lish -4 ga ko'paytirishni bekor qiladi.
y^{2}-y=-\frac{2}{-4}
4 ni -4 ga bo'lish.
y^{2}-y=\frac{1}{2}
\frac{-2}{-4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-y+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
y^{2}-y+\frac{1}{4}=\frac{3}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(y-\frac{1}{2}\right)^{2}=\frac{3}{4}
y^{2}-y+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-\frac{1}{2}=\frac{\sqrt{3}}{2} y-\frac{1}{2}=-\frac{\sqrt{3}}{2}
Qisqartirish.
y=\frac{\sqrt{3}+1}{2} y=\frac{1-\sqrt{3}}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.