Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-5x^{2}+8x+2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-8±\sqrt{8^{2}-4\left(-5\right)\times 2}}{2\left(-5\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{64-4\left(-5\right)\times 2}}{2\left(-5\right)}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64+20\times 2}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{64+40}}{2\left(-5\right)}
20 ni 2 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{104}}{2\left(-5\right)}
64 ni 40 ga qo'shish.
x=\frac{-8±2\sqrt{26}}{2\left(-5\right)}
104 ning kvadrat ildizini chiqarish.
x=\frac{-8±2\sqrt{26}}{-10}
2 ni -5 marotabaga ko'paytirish.
x=\frac{2\sqrt{26}-8}{-10}
x=\frac{-8±2\sqrt{26}}{-10} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{26} ga qo'shish.
x=\frac{4-\sqrt{26}}{5}
-8+2\sqrt{26} ni -10 ga bo'lish.
x=\frac{-2\sqrt{26}-8}{-10}
x=\frac{-8±2\sqrt{26}}{-10} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{26} ni ayirish.
x=\frac{\sqrt{26}+4}{5}
-8-2\sqrt{26} ni -10 ga bo'lish.
-5x^{2}+8x+2=-5\left(x-\frac{4-\sqrt{26}}{5}\right)\left(x-\frac{\sqrt{26}+4}{5}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{4-\sqrt{26}}{5} ga va x_{2} uchun \frac{4+\sqrt{26}}{5} ga bo‘ling.