x uchun yechish
x = \frac{\sqrt{41} + 3}{8} \approx 1,17539053
x=\frac{3-\sqrt{41}}{8}\approx -0,42539053
Grafik
Baham ko'rish
Klipbordga nusxa olish
-4x^{2}+3x+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, 3 ni b va 2 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-4\right)\times 2}}{2\left(-4\right)}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+16\times 2}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+32}}{2\left(-4\right)}
16 ni 2 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{41}}{2\left(-4\right)}
9 ni 32 ga qo'shish.
x=\frac{-3±\sqrt{41}}{-8}
2 ni -4 marotabaga ko'paytirish.
x=\frac{\sqrt{41}-3}{-8}
x=\frac{-3±\sqrt{41}}{-8} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{41} ga qo'shish.
x=\frac{3-\sqrt{41}}{8}
-3+\sqrt{41} ni -8 ga bo'lish.
x=\frac{-\sqrt{41}-3}{-8}
x=\frac{-3±\sqrt{41}}{-8} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{41} ni ayirish.
x=\frac{\sqrt{41}+3}{8}
-3-\sqrt{41} ni -8 ga bo'lish.
x=\frac{3-\sqrt{41}}{8} x=\frac{\sqrt{41}+3}{8}
Tenglama yechildi.
-4x^{2}+3x+2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-4x^{2}+3x+2-2=-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
-4x^{2}+3x=-2
O‘zidan 2 ayirilsa 0 qoladi.
\frac{-4x^{2}+3x}{-4}=-\frac{2}{-4}
Ikki tarafini -4 ga bo‘ling.
x^{2}+\frac{3}{-4}x=-\frac{2}{-4}
-4 ga bo'lish -4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{3}{4}x=-\frac{2}{-4}
3 ni -4 ga bo'lish.
x^{2}-\frac{3}{4}x=\frac{1}{2}
\frac{-2}{-4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\frac{1}{2}+\left(-\frac{3}{8}\right)^{2}
-\frac{3}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{8} olish uchun. Keyin, -\frac{3}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{1}{2}+\frac{9}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{8} kvadratini chiqarish.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{41}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{9}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{8}\right)^{2}=\frac{41}{64}
x^{2}-\frac{3}{4}x+\frac{9}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{8}=\frac{\sqrt{41}}{8} x-\frac{3}{8}=-\frac{\sqrt{41}}{8}
Qisqartirish.
x=\frac{\sqrt{41}+3}{8} x=\frac{3-\sqrt{41}}{8}
\frac{3}{8} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}