Tasdiqlamoq
yolgʻon
Baham ko'rish
Klipbordga nusxa olish
2+\frac{1}{2+\frac{1}{1+1}}=\frac{61}{24}
1 ni olish uchun 1 ni 1 ga bo‘ling.
2+\frac{1}{2+\frac{1}{2}}=\frac{61}{24}
2 olish uchun 1 va 1'ni qo'shing.
2+\frac{1}{\frac{4}{2}+\frac{1}{2}}=\frac{61}{24}
2 ni \frac{4}{2} kasrga o‘giring.
2+\frac{1}{\frac{4+1}{2}}=\frac{61}{24}
\frac{4}{2} va \frac{1}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
2+\frac{1}{\frac{5}{2}}=\frac{61}{24}
5 olish uchun 4 va 1'ni qo'shing.
2+1\times \frac{2}{5}=\frac{61}{24}
1 ni \frac{5}{2} ga bo'lish 1 ga k'paytirish \frac{5}{2} ga qaytarish.
2+\frac{2}{5}=\frac{61}{24}
\frac{2}{5} hosil qilish uchun 1 va \frac{2}{5} ni ko'paytirish.
\frac{10}{5}+\frac{2}{5}=\frac{61}{24}
2 ni \frac{10}{5} kasrga o‘giring.
\frac{10+2}{5}=\frac{61}{24}
\frac{10}{5} va \frac{2}{5} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{12}{5}=\frac{61}{24}
12 olish uchun 10 va 2'ni qo'shing.
\frac{288}{120}=\frac{305}{120}
5 va 24 ning eng kichik umumiy karralisi 120 ga teng. \frac{12}{5} va \frac{61}{24} ni 120 maxraj bilan kasrlarga aylantirib oling.
\text{false}
\frac{288}{120} va \frac{305}{120} ni taqqoslang.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}