Baholash
3+\frac{1}{x}
x ga nisbatan hosilani topish
-\frac{1}{x^{2}}
Grafik
Baham ko'rish
Klipbordga nusxa olish
2+\frac{1}{\frac{x+1}{x+1}-\frac{1}{x+1}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{x+1}{x+1} marotabaga ko'paytirish.
2+\frac{1}{\frac{x+1-1}{x+1}}
\frac{x+1}{x+1} va \frac{1}{x+1} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
2+\frac{1}{\frac{x}{x+1}}
x+1-1 kabi iboralarga o‘xshab birlashtiring.
2+\frac{x+1}{x}
1 ni \frac{x}{x+1} ga bo'lish 1 ga k'paytirish \frac{x}{x+1} ga qaytarish.
\frac{2x}{x}+\frac{x+1}{x}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2 ni \frac{x}{x} marotabaga ko'paytirish.
\frac{2x+x+1}{x}
\frac{2x}{x} va \frac{x+1}{x} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{3x+1}{x}
2x+x+1 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{1}{\frac{x+1}{x+1}-\frac{1}{x+1}})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{x+1}{x+1} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{1}{\frac{x+1-1}{x+1}})
\frac{x+1}{x+1} va \frac{1}{x+1} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{1}{\frac{x}{x+1}})
x+1-1 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{x+1}{x})
1 ni \frac{x}{x+1} ga bo'lish 1 ga k'paytirish \frac{x}{x+1} ga qaytarish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{x}+\frac{x+1}{x})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2 ni \frac{x}{x} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+x+1}{x})
\frac{2x}{x} va \frac{x+1}{x} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+1}{x})
2x+x+1 kabi iboralarga o‘xshab birlashtiring.
\left(3x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+1)
Har qanday ikki differensial funksiya uchun, ikki funksiya koʻpaytmasining hosilasi birinchi funksiya marotabasi, ikkinchi plyus hosilasi ikkinchi funksiya marotabasi birinchining hosilasidir.
\left(3x^{1}+1\right)\left(-1\right)x^{-1-1}+\frac{1}{x}\times 3x^{1-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\left(3x^{1}+1\right)\left(-1\right)x^{-2}+\frac{1}{x}\times 3x^{0}
Qisqartirish.
3x^{1}\left(-1\right)x^{-2}-x^{-2}+\frac{1}{x}\times 3x^{0}
3x^{1}+1 ni -x^{-2} marotabaga ko'paytirish.
-3x^{1-2}-x^{-2}+3\times \frac{1}{x}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
-3\times \frac{1}{x}-x^{-2}+3\times \frac{1}{x}
Qisqartirish.
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{1}{\frac{x+1}{x+1}-\frac{1}{x+1}})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{x+1}{x+1} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{1}{\frac{x+1-1}{x+1}})
\frac{x+1}{x+1} va \frac{1}{x+1} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{1}{\frac{x}{x+1}})
x+1-1 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(2+\frac{x+1}{x})
1 ni \frac{x}{x+1} ga bo'lish 1 ga k'paytirish \frac{x}{x+1} ga qaytarish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{x}+\frac{x+1}{x})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2 ni \frac{x}{x} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+x+1}{x})
\frac{2x}{x} va \frac{x+1}{x} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+1}{x})
2x+x+1 kabi iboralarga o‘xshab birlashtiring.
\frac{x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+1)-\left(3x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})}{\left(x^{1}\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{x^{1}\times 3x^{1-1}-\left(3x^{1}+1\right)x^{1-1}}{\left(x^{1}\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{x^{1}\times 3x^{0}-\left(3x^{1}+1\right)x^{0}}{\left(x^{1}\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{x^{1}\times 3x^{0}-\left(3x^{1}x^{0}+x^{0}\right)}{\left(x^{1}\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{3x^{1}-\left(3x^{1}+x^{0}\right)}{\left(x^{1}\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{3x^{1}-3x^{1}-x^{0}}{\left(x^{1}\right)^{2}}
Keraksiz qavslarni olib tashlash.
\frac{\left(3-3\right)x^{1}-x^{0}}{\left(x^{1}\right)^{2}}
O'xshash hadlarni birlashtirish.
-\frac{x^{0}}{\left(x^{1}\right)^{2}}
3 dan 3 ni ayirish.
-\frac{x^{0}}{1^{2}x^{2}}
Ikki yoki undan ko'p raqam koʻpaytmasini daraja ko'rsatkichiga oshirish uchun har bir raqamni daraja ko'rsatkichiga oshiring va ularning koʻpaytmasini chiqaring.
-\frac{x^{0}}{x^{2}}
1 ni 2 daraja ko'rsatgichiga oshirish.
\frac{-x^{0}}{x^{2}}
1 ni 2 marotabaga ko'paytirish.
\left(-\frac{1}{1}\right)x^{-2}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
-x^{-2}
Arifmetik hisobni amalga oshirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}