Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=15 ab=19\left(-34\right)=-646
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 19x^{2}+ax+bx-34 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,646 -2,323 -17,38 -19,34
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -646-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+646=645 -2+323=321 -17+38=21 -19+34=15
Har bir juftlik yigʻindisini hisoblang.
a=-19 b=34
Yechim – 15 yigʻindisini beruvchi juftlik.
\left(19x^{2}-19x\right)+\left(34x-34\right)
19x^{2}+15x-34 ni \left(19x^{2}-19x\right)+\left(34x-34\right) sifatida qaytadan yozish.
19x\left(x-1\right)+34\left(x-1\right)
Birinchi guruhda 19x ni va ikkinchi guruhda 34 ni faktordan chiqaring.
\left(x-1\right)\left(19x+34\right)
Distributiv funktsiyasidan foydalangan holda x-1 umumiy terminini chiqaring.
x=1 x=-\frac{34}{19}
Tenglamani yechish uchun x-1=0 va 19x+34=0 ni yeching.
19x^{2}+15x-34=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-15±\sqrt{15^{2}-4\times 19\left(-34\right)}}{2\times 19}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 19 ni a, 15 ni b va -34 ni c bilan almashtiring.
x=\frac{-15±\sqrt{225-4\times 19\left(-34\right)}}{2\times 19}
15 kvadratini chiqarish.
x=\frac{-15±\sqrt{225-76\left(-34\right)}}{2\times 19}
-4 ni 19 marotabaga ko'paytirish.
x=\frac{-15±\sqrt{225+2584}}{2\times 19}
-76 ni -34 marotabaga ko'paytirish.
x=\frac{-15±\sqrt{2809}}{2\times 19}
225 ni 2584 ga qo'shish.
x=\frac{-15±53}{2\times 19}
2809 ning kvadrat ildizini chiqarish.
x=\frac{-15±53}{38}
2 ni 19 marotabaga ko'paytirish.
x=\frac{38}{38}
x=\frac{-15±53}{38} tenglamasini yeching, bunda ± musbat. -15 ni 53 ga qo'shish.
x=1
38 ni 38 ga bo'lish.
x=-\frac{68}{38}
x=\frac{-15±53}{38} tenglamasini yeching, bunda ± manfiy. -15 dan 53 ni ayirish.
x=-\frac{34}{19}
\frac{-68}{38} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=1 x=-\frac{34}{19}
Tenglama yechildi.
19x^{2}+15x-34=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
19x^{2}+15x-34-\left(-34\right)=-\left(-34\right)
34 ni tenglamaning ikkala tarafiga qo'shish.
19x^{2}+15x=-\left(-34\right)
O‘zidan -34 ayirilsa 0 qoladi.
19x^{2}+15x=34
0 dan -34 ni ayirish.
\frac{19x^{2}+15x}{19}=\frac{34}{19}
Ikki tarafini 19 ga bo‘ling.
x^{2}+\frac{15}{19}x=\frac{34}{19}
19 ga bo'lish 19 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{15}{19}x+\left(\frac{15}{38}\right)^{2}=\frac{34}{19}+\left(\frac{15}{38}\right)^{2}
\frac{15}{19} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{15}{38} olish uchun. Keyin, \frac{15}{38} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{15}{19}x+\frac{225}{1444}=\frac{34}{19}+\frac{225}{1444}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{15}{38} kvadratini chiqarish.
x^{2}+\frac{15}{19}x+\frac{225}{1444}=\frac{2809}{1444}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{34}{19} ni \frac{225}{1444} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{15}{38}\right)^{2}=\frac{2809}{1444}
x^{2}+\frac{15}{19}x+\frac{225}{1444} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{15}{38}\right)^{2}}=\sqrt{\frac{2809}{1444}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{15}{38}=\frac{53}{38} x+\frac{15}{38}=-\frac{53}{38}
Qisqartirish.
x=1 x=-\frac{34}{19}
Tenglamaning ikkala tarafidan \frac{15}{38} ni ayirish.