Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

187x^{2}-40x-12=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 187\left(-12\right)}}{2\times 187}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 187\left(-12\right)}}{2\times 187}
-40 kvadratini chiqarish.
x=\frac{-\left(-40\right)±\sqrt{1600-748\left(-12\right)}}{2\times 187}
-4 ni 187 marotabaga ko'paytirish.
x=\frac{-\left(-40\right)±\sqrt{1600+8976}}{2\times 187}
-748 ni -12 marotabaga ko'paytirish.
x=\frac{-\left(-40\right)±\sqrt{10576}}{2\times 187}
1600 ni 8976 ga qo'shish.
x=\frac{-\left(-40\right)±4\sqrt{661}}{2\times 187}
10576 ning kvadrat ildizini chiqarish.
x=\frac{40±4\sqrt{661}}{2\times 187}
-40 ning teskarisi 40 ga teng.
x=\frac{40±4\sqrt{661}}{374}
2 ni 187 marotabaga ko'paytirish.
x=\frac{4\sqrt{661}+40}{374}
x=\frac{40±4\sqrt{661}}{374} tenglamasini yeching, bunda ± musbat. 40 ni 4\sqrt{661} ga qo'shish.
x=\frac{2\sqrt{661}+20}{187}
40+4\sqrt{661} ni 374 ga bo'lish.
x=\frac{40-4\sqrt{661}}{374}
x=\frac{40±4\sqrt{661}}{374} tenglamasini yeching, bunda ± manfiy. 40 dan 4\sqrt{661} ni ayirish.
x=\frac{20-2\sqrt{661}}{187}
40-4\sqrt{661} ni 374 ga bo'lish.
187x^{2}-40x-12=187\left(x-\frac{2\sqrt{661}+20}{187}\right)\left(x-\frac{20-2\sqrt{661}}{187}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{20+2\sqrt{661}}{187} ga va x_{2} uchun \frac{20-2\sqrt{661}}{187} ga bo‘ling.