h uchun yechish
h=\frac{n^{2}-2n+72}{36}
n uchun yechish (complex solution)
n=\sqrt{36h-71}+1
n=-\sqrt{36h-71}+1
n uchun yechish
n=\sqrt{36h-71}+1
n=-\sqrt{36h-71}+1\text{, }h\geq \frac{71}{36}
Baham ko'rish
Klipbordga nusxa olish
180h-360=n\times 5\left(n-2\right)
180 ga h-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
180h-360=5n^{2}-2n\times 5
n\times 5 ga n-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
180h-360=5n^{2}-10n
-10 hosil qilish uchun -2 va 5 ni ko'paytirish.
180h=5n^{2}-10n+360
360 ni ikki tarafga qo’shing.
\frac{180h}{180}=\frac{5n^{2}-10n+360}{180}
Ikki tarafini 180 ga bo‘ling.
h=\frac{5n^{2}-10n+360}{180}
180 ga bo'lish 180 ga ko'paytirishni bekor qiladi.
h=\frac{n^{2}}{36}-\frac{n}{18}+2
5n^{2}-10n+360 ni 180 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}