x uchun yechish
x = \frac{\sqrt{3} + 5}{6} \approx 1,122008468
x=\frac{5-\sqrt{3}}{6}\approx 0,544658199
Grafik
Baham ko'rish
Klipbordga nusxa olish
18x^{2}-30x+11=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 18\times 11}}{2\times 18}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 18 ni a, -30 ni b va 11 ni c bilan almashtiring.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 18\times 11}}{2\times 18}
-30 kvadratini chiqarish.
x=\frac{-\left(-30\right)±\sqrt{900-72\times 11}}{2\times 18}
-4 ni 18 marotabaga ko'paytirish.
x=\frac{-\left(-30\right)±\sqrt{900-792}}{2\times 18}
-72 ni 11 marotabaga ko'paytirish.
x=\frac{-\left(-30\right)±\sqrt{108}}{2\times 18}
900 ni -792 ga qo'shish.
x=\frac{-\left(-30\right)±6\sqrt{3}}{2\times 18}
108 ning kvadrat ildizini chiqarish.
x=\frac{30±6\sqrt{3}}{2\times 18}
-30 ning teskarisi 30 ga teng.
x=\frac{30±6\sqrt{3}}{36}
2 ni 18 marotabaga ko'paytirish.
x=\frac{6\sqrt{3}+30}{36}
x=\frac{30±6\sqrt{3}}{36} tenglamasini yeching, bunda ± musbat. 30 ni 6\sqrt{3} ga qo'shish.
x=\frac{\sqrt{3}+5}{6}
30+6\sqrt{3} ni 36 ga bo'lish.
x=\frac{30-6\sqrt{3}}{36}
x=\frac{30±6\sqrt{3}}{36} tenglamasini yeching, bunda ± manfiy. 30 dan 6\sqrt{3} ni ayirish.
x=\frac{5-\sqrt{3}}{6}
30-6\sqrt{3} ni 36 ga bo'lish.
x=\frac{\sqrt{3}+5}{6} x=\frac{5-\sqrt{3}}{6}
Tenglama yechildi.
18x^{2}-30x+11=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
18x^{2}-30x+11-11=-11
Tenglamaning ikkala tarafidan 11 ni ayirish.
18x^{2}-30x=-11
O‘zidan 11 ayirilsa 0 qoladi.
\frac{18x^{2}-30x}{18}=-\frac{11}{18}
Ikki tarafini 18 ga bo‘ling.
x^{2}+\left(-\frac{30}{18}\right)x=-\frac{11}{18}
18 ga bo'lish 18 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{5}{3}x=-\frac{11}{18}
\frac{-30}{18} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{11}{18}+\left(-\frac{5}{6}\right)^{2}
-\frac{5}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{6} olish uchun. Keyin, -\frac{5}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{11}{18}+\frac{25}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{6} kvadratini chiqarish.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{1}{12}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{11}{18} ni \frac{25}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{6}\right)^{2}=\frac{1}{12}
x^{2}-\frac{5}{3}x+\frac{25}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{1}{12}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{6}=\frac{\sqrt{3}}{6} x-\frac{5}{6}=-\frac{\sqrt{3}}{6}
Qisqartirish.
x=\frac{\sqrt{3}+5}{6} x=\frac{5-\sqrt{3}}{6}
\frac{5}{6} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}