Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

18x=36\sqrt{1-x^{2}}
Tenglamaning ikkala tarafidan 0 ni ayirish.
18x+0=36\sqrt{1-x^{2}}
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
18x=36\sqrt{1-x^{2}}
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\left(18x\right)^{2}=\left(36\sqrt{1-x^{2}}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
18^{2}x^{2}=\left(36\sqrt{1-x^{2}}\right)^{2}
\left(18x\right)^{2} ni kengaytirish.
324x^{2}=\left(36\sqrt{1-x^{2}}\right)^{2}
2 daraja ko‘rsatkichini 18 ga hisoblang va 324 ni qiymatni oling.
324x^{2}=36^{2}\left(\sqrt{1-x^{2}}\right)^{2}
\left(36\sqrt{1-x^{2}}\right)^{2} ni kengaytirish.
324x^{2}=1296\left(\sqrt{1-x^{2}}\right)^{2}
2 daraja ko‘rsatkichini 36 ga hisoblang va 1296 ni qiymatni oling.
324x^{2}=1296\left(1-x^{2}\right)
2 daraja ko‘rsatkichini \sqrt{1-x^{2}} ga hisoblang va 1-x^{2} ni qiymatni oling.
324x^{2}=1296-1296x^{2}
1296 ga 1-x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
324x^{2}+1296x^{2}=1296
1296x^{2} ni ikki tarafga qo’shing.
1620x^{2}=1296
1620x^{2} ni olish uchun 324x^{2} va 1296x^{2} ni birlashtirish.
x^{2}=\frac{1296}{1620}
Ikki tarafini 1620 ga bo‘ling.
x^{2}=\frac{4}{5}
\frac{1296}{1620} ulushini 324 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{2\sqrt{5}}{5} x=-\frac{2\sqrt{5}}{5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
18\times \frac{2\sqrt{5}}{5}=0\times \frac{2\sqrt{5}}{5}+36\sqrt{1-\left(\frac{2\sqrt{5}}{5}\right)^{2}}
18x=0x+36\sqrt{1-x^{2}} tenglamasida x uchun \frac{2\sqrt{5}}{5} ni almashtiring.
\frac{36}{5}\times 5^{\frac{1}{2}}=\frac{36}{5}\times 5^{\frac{1}{2}}
Qisqartirish. x=\frac{2\sqrt{5}}{5} tenglamani qoniqtiradi.
18\left(-\frac{2\sqrt{5}}{5}\right)=0\left(-\frac{2\sqrt{5}}{5}\right)+36\sqrt{1-\left(-\frac{2\sqrt{5}}{5}\right)^{2}}
18x=0x+36\sqrt{1-x^{2}} tenglamasida x uchun -\frac{2\sqrt{5}}{5} ni almashtiring.
-\frac{36}{5}\times 5^{\frac{1}{2}}=\frac{36}{5}\times 5^{\frac{1}{2}}
Qisqartirish. x=-\frac{2\sqrt{5}}{5} qiymati bu tenglamani qoniqtirmaydi, chunki oʻng va chap tarafdagi belgilar bir-biriga qarama-qarshi.
x=\frac{2\sqrt{5}}{5}
18x=36\sqrt{1-x^{2}} tenglamasi noyob yechimga ega.