Asosiy tarkibga oʻtish
m uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

18m^{2}=-900
Ikkala tarafdan 900 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
m^{2}=\frac{-900}{18}
Ikki tarafini 18 ga bo‘ling.
m^{2}=-50
-50 ni olish uchun -900 ni 18 ga bo‘ling.
m=5\sqrt{2}i m=-5\sqrt{2}i
Tenglama yechildi.
18m^{2}+900=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\times 18\times 900}}{2\times 18}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 18 ni a, 0 ni b va 900 ni c bilan almashtiring.
m=\frac{0±\sqrt{-4\times 18\times 900}}{2\times 18}
0 kvadratini chiqarish.
m=\frac{0±\sqrt{-72\times 900}}{2\times 18}
-4 ni 18 marotabaga ko'paytirish.
m=\frac{0±\sqrt{-64800}}{2\times 18}
-72 ni 900 marotabaga ko'paytirish.
m=\frac{0±180\sqrt{2}i}{2\times 18}
-64800 ning kvadrat ildizini chiqarish.
m=\frac{0±180\sqrt{2}i}{36}
2 ni 18 marotabaga ko'paytirish.
m=5\sqrt{2}i
m=\frac{0±180\sqrt{2}i}{36} tenglamasini yeching, bunda ± musbat.
m=-5\sqrt{2}i
m=\frac{0±180\sqrt{2}i}{36} tenglamasini yeching, bunda ± manfiy.
m=5\sqrt{2}i m=-5\sqrt{2}i
Tenglama yechildi.