Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

18x^{2}-230x+600=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-230\right)±\sqrt{\left(-230\right)^{2}-4\times 18\times 600}}{2\times 18}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-230\right)±\sqrt{52900-4\times 18\times 600}}{2\times 18}
-230 kvadratini chiqarish.
x=\frac{-\left(-230\right)±\sqrt{52900-72\times 600}}{2\times 18}
-4 ni 18 marotabaga ko'paytirish.
x=\frac{-\left(-230\right)±\sqrt{52900-43200}}{2\times 18}
-72 ni 600 marotabaga ko'paytirish.
x=\frac{-\left(-230\right)±\sqrt{9700}}{2\times 18}
52900 ni -43200 ga qo'shish.
x=\frac{-\left(-230\right)±10\sqrt{97}}{2\times 18}
9700 ning kvadrat ildizini chiqarish.
x=\frac{230±10\sqrt{97}}{2\times 18}
-230 ning teskarisi 230 ga teng.
x=\frac{230±10\sqrt{97}}{36}
2 ni 18 marotabaga ko'paytirish.
x=\frac{10\sqrt{97}+230}{36}
x=\frac{230±10\sqrt{97}}{36} tenglamasini yeching, bunda ± musbat. 230 ni 10\sqrt{97} ga qo'shish.
x=\frac{5\sqrt{97}+115}{18}
230+10\sqrt{97} ni 36 ga bo'lish.
x=\frac{230-10\sqrt{97}}{36}
x=\frac{230±10\sqrt{97}}{36} tenglamasini yeching, bunda ± manfiy. 230 dan 10\sqrt{97} ni ayirish.
x=\frac{115-5\sqrt{97}}{18}
230-10\sqrt{97} ni 36 ga bo'lish.
18x^{2}-230x+600=18\left(x-\frac{5\sqrt{97}+115}{18}\right)\left(x-\frac{115-5\sqrt{97}}{18}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{115+5\sqrt{97}}{18} ga va x_{2} uchun \frac{115-5\sqrt{97}}{18} ga bo‘ling.