Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

18x^{2}+33x=180
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
18x^{2}+33x-180=180-180
Tenglamaning ikkala tarafidan 180 ni ayirish.
18x^{2}+33x-180=0
O‘zidan 180 ayirilsa 0 qoladi.
x=\frac{-33±\sqrt{33^{2}-4\times 18\left(-180\right)}}{2\times 18}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 18 ni a, 33 ni b va -180 ni c bilan almashtiring.
x=\frac{-33±\sqrt{1089-4\times 18\left(-180\right)}}{2\times 18}
33 kvadratini chiqarish.
x=\frac{-33±\sqrt{1089-72\left(-180\right)}}{2\times 18}
-4 ni 18 marotabaga ko'paytirish.
x=\frac{-33±\sqrt{1089+12960}}{2\times 18}
-72 ni -180 marotabaga ko'paytirish.
x=\frac{-33±\sqrt{14049}}{2\times 18}
1089 ni 12960 ga qo'shish.
x=\frac{-33±3\sqrt{1561}}{2\times 18}
14049 ning kvadrat ildizini chiqarish.
x=\frac{-33±3\sqrt{1561}}{36}
2 ni 18 marotabaga ko'paytirish.
x=\frac{3\sqrt{1561}-33}{36}
x=\frac{-33±3\sqrt{1561}}{36} tenglamasini yeching, bunda ± musbat. -33 ni 3\sqrt{1561} ga qo'shish.
x=\frac{\sqrt{1561}-11}{12}
-33+3\sqrt{1561} ni 36 ga bo'lish.
x=\frac{-3\sqrt{1561}-33}{36}
x=\frac{-33±3\sqrt{1561}}{36} tenglamasini yeching, bunda ± manfiy. -33 dan 3\sqrt{1561} ni ayirish.
x=\frac{-\sqrt{1561}-11}{12}
-33-3\sqrt{1561} ni 36 ga bo'lish.
x=\frac{\sqrt{1561}-11}{12} x=\frac{-\sqrt{1561}-11}{12}
Tenglama yechildi.
18x^{2}+33x=180
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{18x^{2}+33x}{18}=\frac{180}{18}
Ikki tarafini 18 ga bo‘ling.
x^{2}+\frac{33}{18}x=\frac{180}{18}
18 ga bo'lish 18 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{11}{6}x=\frac{180}{18}
\frac{33}{18} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{11}{6}x=10
180 ni 18 ga bo'lish.
x^{2}+\frac{11}{6}x+\left(\frac{11}{12}\right)^{2}=10+\left(\frac{11}{12}\right)^{2}
\frac{11}{6} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{11}{12} olish uchun. Keyin, \frac{11}{12} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{11}{6}x+\frac{121}{144}=10+\frac{121}{144}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{11}{12} kvadratini chiqarish.
x^{2}+\frac{11}{6}x+\frac{121}{144}=\frac{1561}{144}
10 ni \frac{121}{144} ga qo'shish.
\left(x+\frac{11}{12}\right)^{2}=\frac{1561}{144}
x^{2}+\frac{11}{6}x+\frac{121}{144} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{11}{12}\right)^{2}}=\sqrt{\frac{1561}{144}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{11}{12}=\frac{\sqrt{1561}}{12} x+\frac{11}{12}=-\frac{\sqrt{1561}}{12}
Qisqartirish.
x=\frac{\sqrt{1561}-11}{12} x=\frac{-\sqrt{1561}-11}{12}
Tenglamaning ikkala tarafidan \frac{11}{12} ni ayirish.