y uchun yechish
y = \frac{59}{7} = 8\frac{3}{7} = 8,428571428571429
x uchun yechish (complex solution)
x\in \mathrm{C}
y = \frac{59}{7} = 8\frac{3}{7} = 8,428571428571429
x uchun yechish
x\in \mathrm{R}
y = \frac{59}{7} = 8\frac{3}{7} = 8,428571428571429
Grafik
Baham ko'rish
Klipbordga nusxa olish
180\left(0\times 9\times 65x-35\right)+420\left(\frac{y}{10}\times 100-50\right)=8100
Tenglamaning ikkala tarafini 10 ga ko'paytirish.
180\left(0\times 65x-35\right)+420\left(\frac{y}{10}\times 100-50\right)=8100
0 hosil qilish uchun 0 va 9 ni ko'paytirish.
180\left(0x-35\right)+420\left(\frac{y}{10}\times 100-50\right)=8100
0 hosil qilish uchun 0 va 65 ni ko'paytirish.
180\left(0-35\right)+420\left(\frac{y}{10}\times 100-50\right)=8100
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
180\left(-35\right)+420\left(\frac{y}{10}\times 100-50\right)=8100
-35 olish uchun 0 dan 35 ni ayirish.
-6300+420\left(\frac{y}{10}\times 100-50\right)=8100
-6300 hosil qilish uchun 180 va -35 ni ko'paytirish.
-6300+420\left(10y-50\right)=8100
100 va 10 ichida eng katta umumiy 10 faktorini bekor qiling.
-6300+4200y-21000=8100
420 ga 10y-50 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-27300+4200y=8100
-27300 olish uchun -6300 dan 21000 ni ayirish.
4200y=8100+27300
27300 ni ikki tarafga qo’shing.
4200y=35400
35400 olish uchun 8100 va 27300'ni qo'shing.
y=\frac{35400}{4200}
Ikki tarafini 4200 ga bo‘ling.
y=\frac{59}{7}
\frac{35400}{4200} ulushini 600 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}