x uchun yechish (complex solution)
x=\sqrt{970}-30\approx 1,144823005
x=-\left(\sqrt{970}+30\right)\approx -61,144823005
x uchun yechish
x=\sqrt{970}-30\approx 1,144823005
x=-\sqrt{970}-30\approx -61,144823005
Grafik
Baham ko'rish
Klipbordga nusxa olish
-\frac{1}{5}x^{2}-12x+32=18
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\frac{1}{5}x^{2}-12x+32-18=0
Ikkala tarafdan 18 ni ayirish.
-\frac{1}{5}x^{2}-12x+14=0
14 olish uchun 32 dan 18 ni ayirish.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{5} ni a, -12 ni b va 14 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144+\frac{4}{5}\times 14}}{2\left(-\frac{1}{5}\right)}
-4 ni -\frac{1}{5} marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{144+\frac{56}{5}}}{2\left(-\frac{1}{5}\right)}
\frac{4}{5} ni 14 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{\frac{776}{5}}}{2\left(-\frac{1}{5}\right)}
144 ni \frac{56}{5} ga qo'shish.
x=\frac{-\left(-12\right)±\frac{2\sqrt{970}}{5}}{2\left(-\frac{1}{5}\right)}
\frac{776}{5} ning kvadrat ildizini chiqarish.
x=\frac{12±\frac{2\sqrt{970}}{5}}{2\left(-\frac{1}{5}\right)}
-12 ning teskarisi 12 ga teng.
x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}}
2 ni -\frac{1}{5} marotabaga ko'paytirish.
x=\frac{\frac{2\sqrt{970}}{5}+12}{-\frac{2}{5}}
x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} tenglamasini yeching, bunda ± musbat. 12 ni \frac{2\sqrt{970}}{5} ga qo'shish.
x=-\left(\sqrt{970}+30\right)
12+\frac{2\sqrt{970}}{5} ni -\frac{2}{5} ga bo'lish 12+\frac{2\sqrt{970}}{5} ga k'paytirish -\frac{2}{5} ga qaytarish.
x=\frac{-\frac{2\sqrt{970}}{5}+12}{-\frac{2}{5}}
x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} tenglamasini yeching, bunda ± manfiy. 12 dan \frac{2\sqrt{970}}{5} ni ayirish.
x=\sqrt{970}-30
12-\frac{2\sqrt{970}}{5} ni -\frac{2}{5} ga bo'lish 12-\frac{2\sqrt{970}}{5} ga k'paytirish -\frac{2}{5} ga qaytarish.
x=-\left(\sqrt{970}+30\right) x=\sqrt{970}-30
Tenglama yechildi.
-\frac{1}{5}x^{2}-12x+32=18
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\frac{1}{5}x^{2}-12x=18-32
Ikkala tarafdan 32 ni ayirish.
-\frac{1}{5}x^{2}-12x=-14
-14 olish uchun 18 dan 32 ni ayirish.
\frac{-\frac{1}{5}x^{2}-12x}{-\frac{1}{5}}=-\frac{14}{-\frac{1}{5}}
Ikkala tarafini -5 ga ko‘paytiring.
x^{2}+\left(-\frac{12}{-\frac{1}{5}}\right)x=-\frac{14}{-\frac{1}{5}}
-\frac{1}{5} ga bo'lish -\frac{1}{5} ga ko'paytirishni bekor qiladi.
x^{2}+60x=-\frac{14}{-\frac{1}{5}}
-12 ni -\frac{1}{5} ga bo'lish -12 ga k'paytirish -\frac{1}{5} ga qaytarish.
x^{2}+60x=70
-14 ni -\frac{1}{5} ga bo'lish -14 ga k'paytirish -\frac{1}{5} ga qaytarish.
x^{2}+60x+30^{2}=70+30^{2}
60 ni bo‘lish, x shartining koeffitsienti, 2 ga 30 olish uchun. Keyin, 30 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+60x+900=70+900
30 kvadratini chiqarish.
x^{2}+60x+900=970
70 ni 900 ga qo'shish.
\left(x+30\right)^{2}=970
x^{2}+60x+900 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+30\right)^{2}}=\sqrt{970}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+30=\sqrt{970} x+30=-\sqrt{970}
Qisqartirish.
x=\sqrt{970}-30 x=-\sqrt{970}-30
Tenglamaning ikkala tarafidan 30 ni ayirish.
-\frac{1}{5}x^{2}-12x+32=18
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\frac{1}{5}x^{2}-12x+32-18=0
Ikkala tarafdan 18 ni ayirish.
-\frac{1}{5}x^{2}-12x+14=0
14 olish uchun 32 dan 18 ni ayirish.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{5} ni a, -12 ni b va 14 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144+\frac{4}{5}\times 14}}{2\left(-\frac{1}{5}\right)}
-4 ni -\frac{1}{5} marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{144+\frac{56}{5}}}{2\left(-\frac{1}{5}\right)}
\frac{4}{5} ni 14 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{\frac{776}{5}}}{2\left(-\frac{1}{5}\right)}
144 ni \frac{56}{5} ga qo'shish.
x=\frac{-\left(-12\right)±\frac{2\sqrt{970}}{5}}{2\left(-\frac{1}{5}\right)}
\frac{776}{5} ning kvadrat ildizini chiqarish.
x=\frac{12±\frac{2\sqrt{970}}{5}}{2\left(-\frac{1}{5}\right)}
-12 ning teskarisi 12 ga teng.
x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}}
2 ni -\frac{1}{5} marotabaga ko'paytirish.
x=\frac{\frac{2\sqrt{970}}{5}+12}{-\frac{2}{5}}
x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} tenglamasini yeching, bunda ± musbat. 12 ni \frac{2\sqrt{970}}{5} ga qo'shish.
x=-\left(\sqrt{970}+30\right)
12+\frac{2\sqrt{970}}{5} ni -\frac{2}{5} ga bo'lish 12+\frac{2\sqrt{970}}{5} ga k'paytirish -\frac{2}{5} ga qaytarish.
x=\frac{-\frac{2\sqrt{970}}{5}+12}{-\frac{2}{5}}
x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} tenglamasini yeching, bunda ± manfiy. 12 dan \frac{2\sqrt{970}}{5} ni ayirish.
x=\sqrt{970}-30
12-\frac{2\sqrt{970}}{5} ni -\frac{2}{5} ga bo'lish 12-\frac{2\sqrt{970}}{5} ga k'paytirish -\frac{2}{5} ga qaytarish.
x=-\left(\sqrt{970}+30\right) x=\sqrt{970}-30
Tenglama yechildi.
-\frac{1}{5}x^{2}-12x+32=18
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\frac{1}{5}x^{2}-12x=18-32
Ikkala tarafdan 32 ni ayirish.
-\frac{1}{5}x^{2}-12x=-14
-14 olish uchun 18 dan 32 ni ayirish.
\frac{-\frac{1}{5}x^{2}-12x}{-\frac{1}{5}}=-\frac{14}{-\frac{1}{5}}
Ikkala tarafini -5 ga ko‘paytiring.
x^{2}+\left(-\frac{12}{-\frac{1}{5}}\right)x=-\frac{14}{-\frac{1}{5}}
-\frac{1}{5} ga bo'lish -\frac{1}{5} ga ko'paytirishni bekor qiladi.
x^{2}+60x=-\frac{14}{-\frac{1}{5}}
-12 ni -\frac{1}{5} ga bo'lish -12 ga k'paytirish -\frac{1}{5} ga qaytarish.
x^{2}+60x=70
-14 ni -\frac{1}{5} ga bo'lish -14 ga k'paytirish -\frac{1}{5} ga qaytarish.
x^{2}+60x+30^{2}=70+30^{2}
60 ni bo‘lish, x shartining koeffitsienti, 2 ga 30 olish uchun. Keyin, 30 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+60x+900=70+900
30 kvadratini chiqarish.
x^{2}+60x+900=970
70 ni 900 ga qo'shish.
\left(x+30\right)^{2}=970
x^{2}+60x+900 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+30\right)^{2}}=\sqrt{970}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+30=\sqrt{970} x+30=-\sqrt{970}
Qisqartirish.
x=\sqrt{970}-30 x=-\sqrt{970}-30
Tenglamaning ikkala tarafidan 30 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}