Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

17x^{2}-6x-15=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 17\left(-15\right)}}{2\times 17}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 17 ni a, -6 ni b va -15 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 17\left(-15\right)}}{2\times 17}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36-68\left(-15\right)}}{2\times 17}
-4 ni 17 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{36+1020}}{2\times 17}
-68 ni -15 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{1056}}{2\times 17}
36 ni 1020 ga qo'shish.
x=\frac{-\left(-6\right)±4\sqrt{66}}{2\times 17}
1056 ning kvadrat ildizini chiqarish.
x=\frac{6±4\sqrt{66}}{2\times 17}
-6 ning teskarisi 6 ga teng.
x=\frac{6±4\sqrt{66}}{34}
2 ni 17 marotabaga ko'paytirish.
x=\frac{4\sqrt{66}+6}{34}
x=\frac{6±4\sqrt{66}}{34} tenglamasini yeching, bunda ± musbat. 6 ni 4\sqrt{66} ga qo'shish.
x=\frac{2\sqrt{66}+3}{17}
6+4\sqrt{66} ni 34 ga bo'lish.
x=\frac{6-4\sqrt{66}}{34}
x=\frac{6±4\sqrt{66}}{34} tenglamasini yeching, bunda ± manfiy. 6 dan 4\sqrt{66} ni ayirish.
x=\frac{3-2\sqrt{66}}{17}
6-4\sqrt{66} ni 34 ga bo'lish.
x=\frac{2\sqrt{66}+3}{17} x=\frac{3-2\sqrt{66}}{17}
Tenglama yechildi.
17x^{2}-6x-15=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
17x^{2}-6x-15-\left(-15\right)=-\left(-15\right)
15 ni tenglamaning ikkala tarafiga qo'shish.
17x^{2}-6x=-\left(-15\right)
O‘zidan -15 ayirilsa 0 qoladi.
17x^{2}-6x=15
0 dan -15 ni ayirish.
\frac{17x^{2}-6x}{17}=\frac{15}{17}
Ikki tarafini 17 ga bo‘ling.
x^{2}-\frac{6}{17}x=\frac{15}{17}
17 ga bo'lish 17 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{6}{17}x+\left(-\frac{3}{17}\right)^{2}=\frac{15}{17}+\left(-\frac{3}{17}\right)^{2}
-\frac{6}{17} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{17} olish uchun. Keyin, -\frac{3}{17} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{6}{17}x+\frac{9}{289}=\frac{15}{17}+\frac{9}{289}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{17} kvadratini chiqarish.
x^{2}-\frac{6}{17}x+\frac{9}{289}=\frac{264}{289}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{15}{17} ni \frac{9}{289} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{17}\right)^{2}=\frac{264}{289}
x^{2}-\frac{6}{17}x+\frac{9}{289} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{17}\right)^{2}}=\sqrt{\frac{264}{289}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{17}=\frac{2\sqrt{66}}{17} x-\frac{3}{17}=-\frac{2\sqrt{66}}{17}
Qisqartirish.
x=\frac{2\sqrt{66}+3}{17} x=\frac{3-2\sqrt{66}}{17}
\frac{3}{17} ni tenglamaning ikkala tarafiga qo'shish.