y uchun yechish
y=13
y=-13
Grafik
Viktorina
Polynomial
169 - y ^ { 2 } = 0
Baham ko'rish
Klipbordga nusxa olish
-y^{2}=-169
Ikkala tarafdan 169 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
y^{2}=\frac{-169}{-1}
Ikki tarafini -1 ga bo‘ling.
y^{2}=169
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-169}{-1} kasrini 169 ga soddalashtirish mumkin.
y=13 y=-13
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
-y^{2}+169=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 169}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 0 ni b va 169 ni c bilan almashtiring.
y=\frac{0±\sqrt{-4\left(-1\right)\times 169}}{2\left(-1\right)}
0 kvadratini chiqarish.
y=\frac{0±\sqrt{4\times 169}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
y=\frac{0±\sqrt{676}}{2\left(-1\right)}
4 ni 169 marotabaga ko'paytirish.
y=\frac{0±26}{2\left(-1\right)}
676 ning kvadrat ildizini chiqarish.
y=\frac{0±26}{-2}
2 ni -1 marotabaga ko'paytirish.
y=-13
y=\frac{0±26}{-2} tenglamasini yeching, bunda ± musbat. 26 ni -2 ga bo'lish.
y=13
y=\frac{0±26}{-2} tenglamasini yeching, bunda ± manfiy. -26 ni -2 ga bo'lish.
y=-13 y=13
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}