x uchun yechish
x=40
x=52
Grafik
Baham ko'rish
Klipbordga nusxa olish
-x^{2}+92x-1920=160
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-x^{2}+92x-1920-160=0
Ikkala tarafdan 160 ni ayirish.
-x^{2}+92x-2080=0
-2080 olish uchun -1920 dan 160 ni ayirish.
x=\frac{-92±\sqrt{92^{2}-4\left(-1\right)\left(-2080\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 92 ni b va -2080 ni c bilan almashtiring.
x=\frac{-92±\sqrt{8464-4\left(-1\right)\left(-2080\right)}}{2\left(-1\right)}
92 kvadratini chiqarish.
x=\frac{-92±\sqrt{8464+4\left(-2080\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-92±\sqrt{8464-8320}}{2\left(-1\right)}
4 ni -2080 marotabaga ko'paytirish.
x=\frac{-92±\sqrt{144}}{2\left(-1\right)}
8464 ni -8320 ga qo'shish.
x=\frac{-92±12}{2\left(-1\right)}
144 ning kvadrat ildizini chiqarish.
x=\frac{-92±12}{-2}
2 ni -1 marotabaga ko'paytirish.
x=-\frac{80}{-2}
x=\frac{-92±12}{-2} tenglamasini yeching, bunda ± musbat. -92 ni 12 ga qo'shish.
x=40
-80 ni -2 ga bo'lish.
x=-\frac{104}{-2}
x=\frac{-92±12}{-2} tenglamasini yeching, bunda ± manfiy. -92 dan 12 ni ayirish.
x=52
-104 ni -2 ga bo'lish.
x=40 x=52
Tenglama yechildi.
-x^{2}+92x-1920=160
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-x^{2}+92x=160+1920
1920 ni ikki tarafga qo’shing.
-x^{2}+92x=2080
2080 olish uchun 160 va 1920'ni qo'shing.
\frac{-x^{2}+92x}{-1}=\frac{2080}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{92}{-1}x=\frac{2080}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-92x=\frac{2080}{-1}
92 ni -1 ga bo'lish.
x^{2}-92x=-2080
2080 ni -1 ga bo'lish.
x^{2}-92x+\left(-46\right)^{2}=-2080+\left(-46\right)^{2}
-92 ni bo‘lish, x shartining koeffitsienti, 2 ga -46 olish uchun. Keyin, -46 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-92x+2116=-2080+2116
-46 kvadratini chiqarish.
x^{2}-92x+2116=36
-2080 ni 2116 ga qo'shish.
\left(x-46\right)^{2}=36
x^{2}-92x+2116 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-46\right)^{2}}=\sqrt{36}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-46=6 x-46=-6
Qisqartirish.
x=52 x=40
46 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}