x uchun yechish
\left\{\begin{matrix}x=\frac{\sqrt{225-12y^{2}}}{4}-\frac{y}{2}\text{; }x=-\frac{\sqrt{225-12y^{2}}}{4}+\frac{y}{2}\text{, }&y\geq \frac{15}{4}\text{ and }y\leq \frac{5\sqrt{3}}{2}\\x=-\frac{\sqrt{225-12y^{2}}}{4}-\frac{y}{2}\text{; }x=\frac{\sqrt{225-12y^{2}}}{4}+\frac{y}{2}\text{, }&y\geq -\frac{15}{4}\text{ and }|y|\leq \frac{5\sqrt{3}}{2}\end{matrix}\right,
y uchun yechish
y=\frac{\sqrt{225-12x^{2}}}{4}+\frac{|x|}{2}
y=-\frac{\sqrt{225-12x^{2}}}{4}+\frac{|x|}{2}\text{, }|x|\leq \frac{5\sqrt{3}}{2}
Grafik
Baham ko'rish
Klipbordga nusxa olish
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}